Advertisement

Silicon

pp 1–8 | Cite as

Effect of Atmospheric Ageing on the Properties of Organosilicon (Pp-HMDSO) Thin Films

  • S. SaloumEmail author
  • S. A. Shaker
  • R. Hussin
  • A. Obaid
  • M. N. Alkafri
Original Paper
  • 5 Downloads

Abstract

This study reports the effect of ageing on plasma polymerized hexamethyldisiloxane (pp-HMDSO) thin films properties during 90 days storage in the atmosphere. The monitoring of the change in thin film chemical structure by FTIR analysis indicates that the general trend in the thin film ageing process is the enhancement of its inorganic chemical nature. A thickness decrease of 35% of the thin film is observed after 90 days ageing time. Thin film ageing has induced surface morphology degradation though the enhancement of both roughness and porosity. The resulted structural and morphological changes have affected different thin film properties, such as electrical resistivity, optical band gap, optical reflectance, and micro-hardness.

Keywords

Plasma polymerization Hexamethyldisiloxane (HMDSO) Ageing FTIR AFM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the Director General of AECS Prof. I Othman, for encouragement and permanent support.

References

  1. 1.
    Saloum S, Alkhaled B, Alsadat W, Kakhia M, Shaker SA (2018). Mod Phys Lett B 32:1850036CrossRefGoogle Scholar
  2. 2.
    Wallimann R, Oberbossel G, Butscher D, Rudolf von Rohr P (2017). Eur Phys J Appl Phys 79:20801CrossRefGoogle Scholar
  3. 3.
    Fanelli F, Lovascio S, d’Agostino R, Arefi-Khonsari F, Fracassi F (2010). Plasma Process Polym 7:535CrossRefGoogle Scholar
  4. 4.
    Top M, Fahlteich J, De Hosson JTM (2017). Plasma Process Polym:e1700016.  https://doi.org/10.1002/ppap.201700016 CrossRefGoogle Scholar
  5. 5.
    Wrobel AM (1985). J Macromol Sci-Chem A 22:1089CrossRefGoogle Scholar
  6. 6.
    Gengenbach TR, Griesser HJ (1999). Polymer 40:5079CrossRefGoogle Scholar
  7. 7.
    Blanchard NE, Hanselmann B, Drosten J, Heuberger M, Hegemann D (2015). Plasma Process Polym 12:32CrossRefGoogle Scholar
  8. 8.
    Hall CJ, Ponnusamy T, Murphy PJ, Lindberg M, Antzutkin ON, Griesser HJ (2014). ACS Appl Mater Interfaces 6:8353CrossRefGoogle Scholar
  9. 9.
    Zuber K, Markanday JFS, Hall C, Evans D, Charrault E, Murphy P (2017). Plasma Process Polym:e1600233.  https://doi.org/10.1002/ppap.201600233 CrossRefGoogle Scholar
  10. 10.
    Saloum S, Naddaf M (2008). Vacuum 82:50CrossRefGoogle Scholar
  11. 11.
    Mrad O, Saloum S, Al-Mariri A, Ismail IM (2019). J Polym Eng 39:309CrossRefGoogle Scholar
  12. 12.
    Saloum S, Shaker SA, Alkafri MN, Obeid A, Hussin R (2019). Surf Interface Anal 51:754CrossRefGoogle Scholar
  13. 13.
    Sauerbrey G (1959). Z Phys 155:206CrossRefGoogle Scholar
  14. 14.
    Wohltjen H, Barger WR, Snow AW, Jarvis NL (1985). IEEE Trans Electron Devic:32,1170Google Scholar
  15. 15.
    Landreau X, Lanfant B, Merle T, Dublanche-Tixier C, Tristant P (2012). Eur Phys J D 66:160CrossRefGoogle Scholar
  16. 16.
    Theirich D, Soll C, Leu F, Engemann J (2003). Vacuum 71:349CrossRefGoogle Scholar
  17. 17.
    Massines F, Gherardi N, Fornelli A, Martin S (2005). Surf Coat Technol 200:1855CrossRefGoogle Scholar
  18. 18.
    Saloum S, Naddaf M, Alkhaled B (2008). Vacuum 82:742CrossRefGoogle Scholar
  19. 19.
    Vallee C, Goullet A, Granier A, Van der Lee A, Durand J, Marliere C (2000). J Non-Cryst Solids 272:163CrossRefGoogle Scholar
  20. 20.
    van Hest MFAM, Klaver A, Schram DC, van de Sanden MCM (2004). Thin Solid Films 449:40CrossRefGoogle Scholar
  21. 21.
    Li J, Yuan Q, Chang X, Wang Y, Yin G, Dong C (2017). Plasma Sci Technol 19:045505CrossRefGoogle Scholar
  22. 22.
    Supiot P, Vivien C, Granier A, Bousquet A, Mackova A, Escaich D, Clergereaux R, Raynaud P, Stryhal Z, Pavlik J (2006). Plasma Process Polym 3:100CrossRefGoogle Scholar
  23. 23.
    Crank J (1975) The mathematics of diffusion2nd edn. Clarendon Press, OxfordGoogle Scholar
  24. 24.
    Uddin A, Upama MB, Yi H, Duan L (2019). Coatings 9:65CrossRefGoogle Scholar
  25. 25.
    Yu D, Yang Y-Q, Chen Z, Tao Y, Liu Y-F (2016). Opt Commun 362:43CrossRefGoogle Scholar
  26. 26.
    Rakov N, Mahmood A, Xiao M (2003). Mod Phys Lett B 17:387CrossRefGoogle Scholar
  27. 27.
    Born M, Wolf E (1999) Principles of optics. Cambridge University Press, UKCrossRefGoogle Scholar
  28. 28.
    Mott N, Davis E (1979) Electronic process in non-crystalline materials2nd edn. University Press, OxfordGoogle Scholar
  29. 29.
    Amri R, Sahel S, Gamra D, Lejeune M, Clin M, Zellama K, Bouchriha H (2018). Opt Mater 76:222CrossRefGoogle Scholar
  30. 30.
    Begou T et al (2007). Opt Mater 30:657CrossRefGoogle Scholar
  31. 31.
    Saloum S, Zrir MA, Alkhaled B, Shaker AA (2018). Mater Res 21:e20171082CrossRefGoogle Scholar
  32. 32.
    Wales DJ, Parkera RM, Gatesa JC, Grossel MC, Smith PGR (2013). Sensors Actuators B 188:857CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • S. Saloum
    • 1
    Email author
  • S. A. Shaker
    • 1
  • R. Hussin
    • 1
  • A. Obaid
    • 1
  • M. N. Alkafri
    • 1
  1. 1.Physics DepartmentAtomic Energy CommissionDamascusSyria

Personalised recommendations