Advertisement

Silicon

pp 1–10 | Cite as

Effect of MMT Clay on Mechanical, Thermal and Barrier Properties of Treated Aloevera Fiber/ PLA-Hybrid Biocomposites

  • P. RameshEmail author
  • B. Durga Prasad
  • K. L. Narayana
Original Paper
  • 33 Downloads

Abstract

In this research, the PLA- biocomposite and PLA- hybrid biocomposites were prepared with twin screw extruder, two-roll mill, and compression molding method. The PLA based bio-composites are fabricated with 30% of treated aloevera fiber and 0, 1, 2 and 3 wt% nanoclay filler. The influence of MMT clay on thermal, mechanical and barrier properties of PLA-biocomposite and PLA-hybrid biocomposites has been studied. The PLA-hybrid biocomposites thermal, mechanical and water resistance properties are increased with adding of MMT clay. However, 1 wt.% MMT included PLA-hybrid biocomposites exhibits increased tensile, flexural, impact and abrasion resistance properties than PLA- biocomposite, the improvements 5.72, 6.08, 10.43, and 45.71% respectively are observed. The PLA-bio and hybrid biocomposites showed higher tensile modules 25.76, 18.84, 31.53 and 32.30% respectively, and flexural modules 61.42, 60.95, 66.66 and 79.04% respectively, than pure- PLA. The results TGA analysis depicted that inclusion of MMT clay can improve the decomposition temperature of the PLA-biocomposites. The addition of 3 wt.% MMT clay can improve the PLA- biocomposite decomposition temperature from 295 to 299o C in T 10% likewise 338 to 350o C in T 75%. SEM analysis discloses that, MMT clay not only improves micro-structure and also it acts as a load transfer mechanism. The Physical barrier properties and biodegradability results show that water resistance of biocomposites improved and biodegradability decreased due to adding of MMT clay.

Keywords

Polylactic acid Aloevera fiber NaOH treatment Montmorillonite clay Thermo- mechanical Physical barrier and biodegradability properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos P A 37:80–91CrossRefGoogle Scholar
  2. 2.
    Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRefGoogle Scholar
  3. 3.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated talc on the mechanical and physicmechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos Partb-Eng 38:367–379CrossRefGoogle Scholar
  4. 4.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  5. 5.
    Garlotta D (2001) A literature review of polylactic acid (PLA). J Polym Environ 9:63–84CrossRefGoogle Scholar
  6. 6.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  7. 7.
    Ochi S (2008) Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mech Mater 40:446–452CrossRefGoogle Scholar
  8. 8.
    Shanks RA, Hodzic A, Ridderhof D (2006) Composites of poly (lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 101(6):3620–3629CrossRefGoogle Scholar
  9. 9.
    Zhong J, Li H, Yu J, Tan T (2011) Effects of natural Fiber surface modification on mechanical properties of poly (lactic acid) (PLA)/sweet Sorghum Fiber composites. Polym-Plast Technol Eng 50:1583–1589CrossRefGoogle Scholar
  10. 10.
    Vilay V, Jaafar M, Mat Taib R, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638CrossRefGoogle Scholar
  11. 11.
    Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96CrossRefGoogle Scholar
  12. 12.
    Balakrishnan H, Hassan A, Wahit MU, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31:3289–3298.  https://doi.org/10.1016/j.matdes.2010.02.008 CrossRefGoogle Scholar
  13. 13.
    Mustapa IR, Shanks RA, Kong I (2013) Poly(lactic acid)-hemp-nanosilica hybrid composites: thermomechanical, thermal behavior and morphological properties. Int J Adv Sci Eng Tech 3:192–199Google Scholar
  14. 14.
    Ridzuan MJM, Abdul Majid MS, Afendi M, Azduwin K, Amin NAM, Zahri JM, Gibson AG (2016) Moisture absorption and mechanical degradation of hybrid Pennisetum purpureum/glass–epoxy composites. Compos Struct 141:110–116CrossRefGoogle Scholar
  15. 15.
    Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel) 6:2247–2273CrossRefGoogle Scholar
  16. 16.
    Sathishkumar T, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites – a review. J Reinf Plast Compos 33:454–471CrossRefGoogle Scholar
  17. 17.
    Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Eng 97:2042–2051CrossRefGoogle Scholar
  18. 18.
    Siddika S, Mansura F, Hasan M (2013) Physico-mechanical properties of jute-coir fiber reinforced hybrid polypropylene composites. Int J Chem Mater Sci Eng 7:41–45Google Scholar
  19. 19.
    Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Const Build Mater 123:15–26CrossRefGoogle Scholar
  20. 20.
    Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos Part B 56:197–206CrossRefGoogle Scholar
  21. 21.
    Sajna VP, Mohanty S, Nayak SK (2014) Hybrid green nanocomposites of poly (lactic acid) reinforced with banana fibre and nanoclay. J Reinf Plast Compos 33:1717–1732CrossRefGoogle Scholar
  22. 22.
    Eshun K, He Q (2004) Aloevera: a valuable ingredient for food, pharmaceutical and cosmetic industries- a review. Crit Rev Food Sci Nutr 44:91–96PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Moghaddasi SM, Verma SK (2011). Int J Biol Med Res 2:466–471Google Scholar
  24. 24.
    chaitanya S, Singh I (2016) Novel aloevera fiber reinforced biodegradable composites-development and characterization. J Reinf Plast Compos 35:1411–1423CrossRefGoogle Scholar
  25. 25.
    Kumar KP, Sekaran SJ (2014) Some natural fibers used in polymer composites and their extraction processes: a review. J Reinf Plast Compos 33:1879–1892CrossRefGoogle Scholar
  26. 26.
    Kabir MM, Wang H, Lau KT, Carnado F (2012) Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Composites Part B 43(7):2883–2892CrossRefGoogle Scholar
  27. 27.
    Xie Y, Hill CAS, Xiao Z, Militz H (2010) Silane coupling agents used for natural Eber/polymer composites: a review. Composites Part A 41:806–819CrossRefGoogle Scholar
  28. 28.
    Ahmed SH, Rasid R, Bonnia NN, Zainol I, Mamun AA, Bledzki AK, Beg MDH (2011) Polyester-Kenaf composites: effects of alkali fiber treatment and toughn-ning of matrix using liquid natural rubber. J Compos Mater 45:203–217CrossRefGoogle Scholar
  29. 29.
    Petinakis, E., Yu, L., Simon, G., and Dean, K. (2013) Natural fibre bio- composites incorporating poly (lactic acid). Fib Reinf Poly-the Techn Appl for Conc Rep 41-59.  https://doi.org/10.5772/52253 Google Scholar
  30. 30.
    Anbukarasi K, Kalaiselvam S (2015) Study of effect of fibre volume and dimension on mechanical, thermal and water absorption behaviour of luffa reinforced epoxy composites. Mater Des 66:321–330CrossRefGoogle Scholar
  31. 31.
    Ramesh P, Durga Prasad B, Narayana KL (2018) Characterization of kenaf fiber and its composites: a review. J Reinf Plast Compos 37:731–737CrossRefGoogle Scholar
  32. 32.
    Souza VS, Bianchi O, Lima MFS, Mauler RS (2014) Morphological, thermomechanical and thermal behavior of epoxy/MMT nanocomposites. J Non-Cryst Solids 400:58–66.  https://doi.org/10.1016/j.jnoncrysol.2014.05.003 CrossRefGoogle Scholar
  33. 33.
    Saba N, Paridah MT, Abdan K, Ibrahim NA (2015) Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers. Bioresource 10:4530–4543CrossRefGoogle Scholar
  34. 34.
    Jahanmardi R, Kangarlou B, Dibazar A (2013) Effects of organically modified nanoclay on cellular morphology, tensile properties, and dimensional stability of flexible polyurethane foams. J Nano Struct Chem 3:82.  https://doi.org/10.1186/2193-8865-3-82 CrossRefGoogle Scholar
  35. 35.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  36. 36.
    Lee SY, Kang IA, Doh GH, Yoon HG, Park BD, Wu Q (2008) Thermal and mechanical properties of wood flour/ talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21:209–223CrossRefGoogle Scholar
  37. 37.
    Lin LH, Liu HH, Yu NK (2007) Morphology and thermal properties of poly (L-lactic acid)/ organoclay nano composites. J Appl Polym Sci 106:260–266CrossRefGoogle Scholar
  38. 38.
    Paul MA, Alexander M, Degee P, Henris C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450CrossRefGoogle Scholar
  39. 39.
    Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Composites Part A 41:954–963CrossRefGoogle Scholar
  40. 40.
    Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with micro fibrillated cellulose. Composites Part A 40:469–475CrossRefGoogle Scholar
  41. 41.
    Meng QK, Hetzer M, De Kee D (2010) PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties. J Compos Mater 45(10):1145–1158CrossRefGoogle Scholar
  42. 42.
    Sajna VP, Mohanty S, Nayak SK (2014) Hybrid green nanocomposites of poly(lactic acid) reinforced with banana fibre and nanoclay. J Reinf Plas Compos 33(18):1717–1732CrossRefGoogle Scholar
  43. 43.
    Kaiser MR, Anuar HB (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22:123–131CrossRefGoogle Scholar
  44. 44.
    Jalalvandi E, Majid RA, Ghanbari T, Thermo HJ (2013) Effects of montmorillonite (MMT) on morphological, tensile, physical barrier properties and biodegradability of polylactic acid/starch/ MMT nanocomposites. J Thermoplast Compos Mater 28:496–509CrossRefGoogle Scholar
  45. 45.
    M.N. Azmil, S.A.Rafeq, R.Nadlene, M.A.M.Irwan and A.M.Aishah, (2012) 3rd International Conference on Engineering and ICT (ICEI2012) Melaka, Malaysia, April 4–5Google Scholar
  46. 46.
    Ramesh P, Durga Prasad B, Narayana KL (2019) Morphological and mechanical properties of treated kenaf fiber /MMT clay reinforced PLA hybrid biocomposites. AIP Conf Proc 2057:020035CrossRefGoogle Scholar
  47. 47.
    A. A. Yussuf , and I. Massoumi, A, Hassan (2010) Comparison of Polylactic acid/Kenaf and Polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429 34CrossRefGoogle Scholar
  48. 48.
    Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos Part B 43:2762–2771CrossRefGoogle Scholar
  49. 49.
    Patel K, Patel J, Gohil P, Chaudhary V (2018) Effect of Nano clay on mechanical behavior of bamboo Fiber reinforced polyester composites. Appl Mech Mater 877:294–298CrossRefGoogle Scholar
  50. 50.
    Lei Y, Wu Q, Clemons CM, Yao F, Xu Y (2007) Influence of Nanoclay on properties of HDPE/wood composites. J Appl Polym Sci 106:3958–3966CrossRefGoogle Scholar
  51. 51.
    C. C. Eng, N. A. Ibrahim, N. Zainuddin, H. Ariffin, W. Md. Z. W. Yunus, Y. Yee Then, and C. Chean (2013) The enhancement of mechanical and thermal properties of Polylactic acid/Polycaprolactone blends by hydrophilic Nanoclay. Indian Journal of Materials Science 2013: Article ID 816503, 11 pages  https://doi.org/10.1155/2013/816503 CrossRefGoogle Scholar
  52. 52.
    Premalal HGB, Ismail H, Baharin A (2003) Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21(7):833–839CrossRefGoogle Scholar
  53. 53.
    Zhao Q, Tao J, Yam RCM, Mok ACK, Li RKY, Song C (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576CrossRefGoogle Scholar
  54. 54.
    Zampaloni M, Pourboghrat F, Yankovich SA, Rodgers BN, Moore J, Drzal LT, Mohanty AK, Misra M (2008) Biodegradation behaviour of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93(8):1571–1576CrossRefGoogle Scholar
  55. 55.
    Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432CrossRefGoogle Scholar
  56. 56.
    El-Shekeil YA, Sapuan M, Khalina A (2012) Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite. Express Polym Lett 6:1032–1040CrossRefGoogle Scholar
  57. 57.
    El-Shekeil A, Sapuan M, Jawaid M, Shuja OMA (2014) Influence of fiber content on mechanical, morphological and thermal properties of kenaf fibres reinforced poly (vinyl chloride)/thermoplastic polyurethane poly-blend composites. Mater Des 58:130–135CrossRefGoogle Scholar
  58. 58.
    Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63(3–4):305–312CrossRefGoogle Scholar
  59. 59.
    Ismail H, Nizam JM, Khalil HPSA (2001) The effect of a compatibiliser on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Test 20:125–133CrossRefGoogle Scholar
  60. 60.
    Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869CrossRefGoogle Scholar
  61. 61.
    Hakamy A, Shaikh FUA, Low IM (2013) Microstructures and mechanical properties of hemp fabric reinforced organoclay–cement nanocomposites. Constr Build Mater 49:298–307CrossRefGoogle Scholar
  62. 62.
    Feng Y, Wang B, Wang F, Zheng G, Dai K, Liu C, Chen J, Shen C (2014) Effects of modified silica on morphology, mechanical property, and thermostability of injection-molded polycarbonate/silica nanocomposites. J Reinf Plast Compos 33:911–922CrossRefGoogle Scholar
  63. 63.
    Brostow W, Lobland HEH, Hnatchuk N, Perez JM (2017) Improvement of scratch and Wear resistance of polymers by fillers including Nanofillers. Nanomaterials 7:66.  https://doi.org/10.3390/nano7030066 CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ohkita SHL (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. J Appl Polym Sci 100(4):3009–3017CrossRefGoogle Scholar
  65. 65.
    El-Shekeil YA, Sapuan SM, Abdan K, Zainudin ES (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater Des 40:299–303CrossRefGoogle Scholar
  66. 66.
    Ismail H, Pasbakhsh P, Fauzi MN, Bakar AA (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27:841–850CrossRefGoogle Scholar
  67. 67.
    Madaleno L, Thomsen JS, Pinto JC (2010) Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos Sci Technol 70:804–814CrossRefGoogle Scholar
  68. 68.
    Yeh JM, Huang HY, Chena CL, Su WF, Yu YH (2006) Siloxane-modified epoxy resin– clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surf Coat Technol 200:2753–2763CrossRefGoogle Scholar
  69. 69.
    Deka BK, Maji TK (2011) Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood. Compos Part A 42:686–693CrossRefGoogle Scholar
  70. 70.
    Zhao H, Li RKY (2008) Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos Part A 39:602–611CrossRefGoogle Scholar
  71. 71.
    Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Technol 65:2364–2373CrossRefGoogle Scholar
  72. 72.
    Alamri H, Low IM (2013) Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fiber reinforced epoxy hybrid nanocomposites. Composites Part A 44:23–31CrossRefGoogle Scholar
  73. 73.
    Islam MS, Talib ZA, Hasan M, Ramli I, Haafiz MKM, Jawaid M, Islam A, Inuwa IM (2017) Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural Fiber polymer nanocomposites. Polym Compos 38:583–587CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Scholar, JNTUAAnanthapuramuIndia
  2. 2.Mechanical Engineering DepartmentJNT UniversityAnanthapuramuIndia
  3. 3.Mechanical Engineering DepartmentSVCETChittoorIndia

Personalised recommendations