pp 1–8 | Cite as

Copper Lithium Silicate/ZrO2 Nanoparticles-Coated Kevlar for Improving UV-Vis Absorbance/ Protection Properties

  • Amany M. El NahrawyEmail author
  • Ahmed S. Montaser
  • Ali B. Abou Hammad
  • Mohamed Ezzat
  • Mahmoud El-shakankery
Original Paper


Kevlar as super strength polyamide textile fabric treated through five concentration of (15 Cu2O3: 5 Li2O: (80-x) SiO2: (1–5) ZrO2) nano-gel which successfully prepared through sol gel method at room temperature for using as a coating layers for Kevlar. The physical/chemical properties of treated and un-treated Kevlar were examined through FTIR, XRD, SEM and UV- absorbance and reflectance. The treatment efficient on Ultraviolet Protection Factor (UPF) and Mechanical properties for treated and un-treated Kevlar was also examined. Optical results clarified that the coating layer copper lithium silicate/zirconium (CLS/ZrO2) NPs on Kevlar surface produces a remarkable contribution to its UV-Vis absorbance properties and creates high energy is absorbed from the UV- light. FTIRimages enhancement in comparison with Kevlar, while new peaks are presented Si-O-Si and its intensity increasing with ZrO2 doping percent at FTIR charts. SEM showed a homogeneous dispersity of CLS/ZRO2NPson Kevlar surface appears as this layer at low concentrations. Kevlar showed ascending UPF values with increasing ZrO2 percent inside CLS/ZrO2NPs. Mechanical properties behaviors directly proportional to early percent’s of CLS/ZrO2NPs doping and then decreases, which means it has not monotonic behavior. The obtained results will assist textile developers to use the new modified Kevlar at different applications as protective clothing.


Kevlar Copper lithium silicate (CLS) Textile Ultraviolet protection factor (UPF) Mechanical 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN (2018) Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharm J 27:1–8. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rabbi MF, Chalivendra V, Kim Y (2018) Dynamic constitutive response of novel auxetic Kevlar®/epoxy composites. Compos Struct 195:1–13. CrossRefGoogle Scholar
  3. 3.
    Khodadadi A, Liaghat G, Bahramian AR, Ahmadi H, Anani Y, Asemani S, Razmkhah O (2019) High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: a comparative study. Compos Struct 216:159–167. CrossRefGoogle Scholar
  4. 4.
    Kawaguchi T (1959) The dynamic mechanical properties of nylons. J Appl Polym Sci 2:56–61. CrossRefGoogle Scholar
  5. 5.
    McKeen LW (2013) 7 - polyamides nylons. In: LW MK (ed) The effect of UV light and weather on plastics and elastomers3rd edn. William Andrew Publishing, Boston, pp 163–191CrossRefGoogle Scholar
  6. 6.
    Thanki PN, Singh RP (1998) Photo-oxidative degradation of nylon 66 under accelerated weathering. Polymer (Guildf) 39:6363–6367. CrossRefGoogle Scholar
  7. 7.
    Hebeish AA, Ramadan MA, Montaser AS, Farag AM (2014) Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol 68:178–184. CrossRefPubMedGoogle Scholar
  8. 8.
    Montaser AS, Ramadan MA, Hebeish AA (2016) Facile way for synthesis silver nanoparticles for obtaining antibacterial textile fabrics. J Appl Pharm Sci 6:139–144.
  9. 9.
    Ramadan MA, Nassar SH, Montaser AS et al (2016) Synthesis of nano-sized zinc oxide and its application for cellulosic textiles. Egypt J Chem 59:523–535Google Scholar
  10. 10.
    Rehan M, Zaghloul S, Mahmoud FA, Montaser AS, Hebeish A (2017) Design of multi-functional cotton gauze with antimicrobial and drug delivery properties. Mater Sci Eng C 80:29–37. CrossRefGoogle Scholar
  11. 11.
    Montaser AS, Abdel-Mohsen AM, Ramadan MA, Sleem AA, Sahffie NM, Jancar J, Hebeish A (2016) Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int J Biol Macromol 92:739–747. CrossRefPubMedGoogle Scholar
  12. 12.
    Lakshmanan A, Chakraborty S (2017) Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose 24:1563–1577. CrossRefGoogle Scholar
  13. 13.
    Lysun NV, Anisimov VM, Anisimova OM, Krichevskii GY (1988) Mechanism of the stabilizing action of disperse dyes on the photodegradation of polyamide. Polym Sci USSR 30:43–48. CrossRefGoogle Scholar
  14. 14.
    Brinker CJ, Scherer GW (1990) CHAPTER 2 - hydrolysis and condensation I: nonsilicates. In: Brinker CJ, Scherer GW (eds) Sol-Gel Science. Academic Press, San Diego, pp 20–95CrossRefGoogle Scholar
  15. 15.
    Elnahrawy AM, Ali AI (2014) Influence of Reaction Conditions on Sol-Gel Process Producing SiO2 and SiO2 -P2O5 Gel and Glass. J Glas Ceram. CrossRefGoogle Scholar
  16. 16.
    Brinker CJ, Scherer GW (1990) CHAPTER 3 - hydrolysis and condensation II: silicates. In: Brinker CJ, Scherer GW (eds) Sol-Gel Science. Academic Press, San Diego, pp 96–233CrossRefGoogle Scholar
  17. 17.
    Elnahrawy A, Soliman AA, Sakr EMM, El Attar HA (2018) Sodium-cobalt ferrite nanostructure study: sol-gel synthesis, characterization, and magnetic properties. J Ovonic Res 14:193–200Google Scholar
  18. 18.
    Elabd M, Elhefnawy O, Elnahrawy A, Elabd A (2015) A new organic–silica based nanocomposite prepared for spectrophotometric determination of uranyl ions. RSC Adv 6:9563–9570. CrossRefGoogle Scholar
  19. 19.
    Li H, Liang K, Mei L, Gu S, Wang S (2001) Corrosion protection of mild steel by zirconia sol-gel coatings. J Mater Sci Lett 20:1081–1083. CrossRefGoogle Scholar
  20. 20.
    Rokita M, Mozgawa W, Adamczyk A (2014) Transformation of silicate gels during heat treatment in air and in argon – spectroscopic studies. J Mol Struct 1070:125–130. CrossRefGoogle Scholar
  21. 21.
    Zhu J, Yuan L, Guan Q, Liang G, Gu A (2017) A novel strategy of fabricating high performance UV-resistant aramid fibers with simultaneously improved surface activity, thermal and mechanical properties through building polydopamine and graphene oxide bi-layer coatings. Chem Eng J 310:134–147. CrossRefGoogle Scholar
  22. 22.
    El-Nahrawy AM, Ali AI, Hammad ABA, Youssef AM (2016) Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity. Int J Biol Macromol 93:267–275. CrossRefPubMedGoogle Scholar
  23. 23.
    Zhou L, Yuan L, Guan Q, Gu A, Liang G (2017) Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance. Appl Surf Sci 411:34–45. CrossRefGoogle Scholar
  24. 24.
    Wu X, Yin S, Dong Q, Guo C, Li H, Kimura T, Sato T (2013) Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B Environ 142–143:450–457. CrossRefGoogle Scholar
  25. 25.
    Cheng Z, Hong D, Dai Y, Jiang C, Meng C, Luo L, Liu X (2018) Highly improved Uv resistance and composite interfacial properties of aramid fiber via iron (III) coordination. Appl Surf Sci 434:473–480. CrossRefGoogle Scholar
  26. 26.
    Ibrahim NA, El-Gamal AR, Gouda M, Mahrous F (2010) A new approach for natural dyeing and functional finishing of cotton cellulose. Carbohydr Polym 82:1205–1211. CrossRefGoogle Scholar
  27. 27.
    Ibrahim NA, Eid BM, Khalil HM, Almetwally AA (2018) A new approach for durable multifunctional coating of PET fabric. Appl Surf Sci 448:95–103. CrossRefGoogle Scholar
  28. 28.
    He Q, Cao S, Wang Y, Xuan S, Wang P, Gong X (2018) Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Compos A Appl Sci Manuf 106:82–90. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Solid-State Physics Department, Physics Research DivisionNational Research CentreDokkiEgypt
  2. 2.Pretreatment & Finishing of Cellulose Based Textiles DepartmentNational Research CenterGizaEgypt
  3. 3.Clothing and Knitting Industrial Research Department, Textile Research DivisionNational Research CenterDokkiEgypt
  4. 4.Spinning and Weaving Engineering Department, Textile Research DivisionNational Research CenterDokkiEgypt

Personalised recommendations