pp 1–15 | Cite as

Investigation of Porous Silicon Layers Properties Using Speckle Techniques for Photovoltaic Applications

  • Alaa T. AhmedEmail author
  • H. El Ghandoor
  • Mostafa A. El-Aasser
  • G. M. Youssef
Original Paper


Speckle imaging technique (SIT) is used as non-destructive testing to obtain indicative speckle patterns with the aim to be applied for photovoltaic solar cells. These speckle patterns are mainly characterized by their contrast and optical density (OD), which give indications for the properties of the solar cell. In the current work, the porous silicon layers (PSLs) acting as an anti-reflection coating (ARC) formed with different surface porosities are prepared on n+p textured crystalline CZ- silicon by electrochemical etching (ECE) in HF-based electrolyte using different current densities. The morphological properties of the PSLs are investigated by scanning electron microscopy (SEM). The optical properties of the textured surfaces are studied using photoluminescence “PL” and reflectivity measurements. The band gap energy of the prepared PSLs increases to 1.89 eV. The reflectivity of the PSLs decreases to 0.75% in a wavelength range (350–750) nm. The current-voltage (I-V) characteristics of Ag/PS/n + p/Ag junction are investigated which reveal an increment in the resulting short-circuit current density and the open-circuit voltage up to 2.96 mA/cm2 and 0.385 V, respectively. These results show an improvement in the fill factor by 48.5%. The inspected properties of the porous silicon solar cells exhibit a correlation with the contrast and the OD of the speckle patterns imaged from these cells.


Porous silicon SEM PL Reflectivity Fill factor Speckle patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333–347CrossRefGoogle Scholar
  2. 2.
    Canham L (2018) Tunable properties of porous silicon. Handb Porous Silicon Second Ed 1–2:283–290CrossRefGoogle Scholar
  3. 3.
    Kuhl M, O’Halloran GM, Gennissen PTJ, French PJ (1998) Formation of porous silicon using an ammonium fluoride based electrolyte for application as a sacrificial layer. J Micromech Microeng 8:317–322CrossRefGoogle Scholar
  4. 4.
    Lehmann V (2005) Electrochemical pore Array fabrication on n-type silicon electrodes. In: Ordered Porous Nanostructures and Applications. Springer, Boston, MA, pp 3–13Google Scholar
  5. 5.
    Kumar P (2011) Effect of silicon crystal size on photoluminescence appearance in porous silicon. ISRN Nanotechnol 2011:1–6CrossRefGoogle Scholar
  6. 6.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048. CrossRefGoogle Scholar
  7. 7.
    Harizi A, Laatar F, Ezzaouia H (2019) Physical properties enhancement of porous silicon treated with In2O3 as a antireflective coating. Results Phys 12:1716–1724. CrossRefGoogle Scholar
  8. 8.
    Škrabić M, Kosović M, Gotić M, Mikac L, Ivanda M, Gamulin O (2019) Near-infrared surface-enhanced Raman scattering on silver-coated porous silicon photonic crystals. Nanomaterials 9:421. CrossRefGoogle Scholar
  9. 9.
    Levitsky IA (2015) Porous silicon structures as optical gas sensors. Sensors (Switzerland) 15:19968–19991CrossRefGoogle Scholar
  10. 10.
    Youssef GM, El-Nahass MM, El-Zaiat SY, Farag MA (2015) Effect of porosity on the electrical and photoelectrical properties of textured n+ p silicon solar cells. Mater Sci Semicond Process 39:457–466CrossRefGoogle Scholar
  11. 11.
    Maniya NH, Ashokan J, Srivastava DN (2018) Application of porous silicon in solar cell. In: AIP Conference ProceedingsGoogle Scholar
  12. 12.
    Praveenkumar S, Lingaraja D, Mahiz Mathi P, Dinesh Ram G (2019) An experimental study of optoelectronic properties of porous silicon for solar cell application. Optik (Stuttg) 178:216–223. CrossRefGoogle Scholar
  13. 13.
    Li M, Li Y, Liu W, Yue L, Li R, Luo Y, Trevor M, Jiang B, Bai F, Fu P, Zhao Y, Shen C, Mbengue JM (2016) Metal-assisted chemical etching for designable monocrystalline silicon nanostructure. Mater Res Bull 76:436–449CrossRefGoogle Scholar
  14. 14.
    Shin DH, Kim JH, Kim JH, Jang CW, Seo SW, Lee HS, Kim S, Choi SH (2017) Graphene/porous silicon Schottky-junction solar cells. J Alloys Compd 715:291–296. CrossRefGoogle Scholar
  15. 15.
    Welford WT (2015) Laser speckle and applications in optics. Phys Bull 31:205–205CrossRefGoogle Scholar
  16. 16.
    Retheesh R, Samuel B, Radhakrishnan P, Nampoori VPN, Mujeeb A (2016) Analysis of various surface roughness parameters of low Modulus aerospace materials using speckle photography. J Aeronaut Aerosp Eng 05:1–6.
  17. 17.
    Hamed AM, El-Ghandoor H, El-Diasty F, Saudy M (2004) Analysis of speckle images to assess surface roughness. Opt Laser Technol 36:249–253CrossRefGoogle Scholar
  18. 18.
    Kayahan E, Oktem H, Hacizade F, Nasibov H, Gundogdu O (2010) Measurement of surface roughness of metals using binary speckle image analysis. Tribol Int 43:307–311CrossRefGoogle Scholar
  19. 19.
    Sprague RA (2008) Surface roughness measurement using white light speckle. Appl Opt 11:2811CrossRefGoogle Scholar
  20. 20.
    Davoodi M, Buchris Y, Cohen I (2019) Analysis of white light speckle. Imaging. 1–5.
  21. 21.
    Fujii H, Asakura T (1975) Statistical properties of image speckle patterns in partially coherent light. Nouv Rev Opt 6:5–14. CrossRefGoogle Scholar
  22. 22.
    Bingi J, Murukeshan VM (2016) Individual speckle diffraction based 1D and 2D random grating fabrication for detector and solar energy harvesting applications. Sci Rep 6:20501. CrossRefGoogle Scholar
  23. 23.
    Bingi J, Murukeshan VM (2015) Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures. Sci Rep 5:1–9. Google Scholar
  24. 24.
    Malekmohammad M, Soltanolkotabi M, Asadi R, Naderi MH, Erfanian A, Zahedinejad M, Bagheri S, Khaje M (2013) Hybrid structure for efficiency enhancement of photodetectors. Appl Surf Sci 264:1–6. CrossRefGoogle Scholar
  25. 25.
    Brissonneau V, Escoubas L, Flory F, Berginc G, Maire G, Giovannini H (2012) Laser assisted fabrication of random rough surfaces for optoelectronics. Appl Surf Sci 258:9171–9174CrossRefGoogle Scholar
  26. 26.
    Yin C-C, Wen T-K (2011) ESPI solution for defect detection in crystalline photovoltaic cells. In: Fan K-C, Song M, Lu R-S (eds) Seventh International Symposium on Precision Engineering Measurements and Instrumentation. p 832139Google Scholar
  27. 27.
    Wen TK, Yin CC (2012) Crack detection in photovoltaic cells by interferometric analysis of electronic speckle patterns. Sol Energy Mater Sol Cells 98:216–223CrossRefGoogle Scholar
  28. 28.
    Lin CS, Haun CM, Hsien FS et al (2011) Application of laser speckle technology in solar wafer roughness inspection system. Indian J Pure Appl Phys 49:523–530Google Scholar
  29. 29.
    Korotcenkov G (2016) Porous silicon: from formation to application: formation and properties, Volume One. CRC Press, Boca RatonCrossRefGoogle Scholar
  30. 30.
    Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137:1887. CrossRefGoogle Scholar
  31. 31.
    Yadav M, Velampati RSR, Sharma R (2018) Colloidal synthesized cobalt nanoparticles for nonvolatile memory device application. IEEE Trans Semicond Manuf 31:356–362. CrossRefGoogle Scholar
  32. 32.
    Yadav M, Velampati RSR, Mandal D, Sharma R (2018) Microwave-assisted size control of colloidal nickel nanocrystals for colloidal nanocrystals-based non-volatile memory devices. J Electron Mater 47:3560–3567. CrossRefGoogle Scholar
  33. 33.
    Nakagawa K, Asakura T (1979) Average contrast of white-light image speckle patterns. Opt Acta (Lond) 26:951–960. CrossRefGoogle Scholar
  34. 34.
    Mahashar Ali J, Siddhi Jailani H, Murugan M (2019) Surface roughness evaluation of milled surfaces by image processing of speckle and white-light images. In: Vijay Sekar KS, Gupta M, Arockiarajan A (eds) Advances in manufacturing processes. Springer Singapore, Singapore, pp 141–151CrossRefGoogle Scholar
  35. 35.
    Mahmoud Al A, Lahlouh B (2017) Silicon pyramid structure as a reflectivity reduction mechanism. J Appl Sci 17:374–383. CrossRefGoogle Scholar
  36. 36.
    Putra IR, Li JY, Chen CY (2019) 18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact. Appl Surf Sci 478:725–732. CrossRefGoogle Scholar
  37. 37.
    Losic D, Santos A (2015) Electrochemically engineered Nanoporous materials. Springer International Publishing, ChamCrossRefGoogle Scholar
  38. 38.
    Kim DA, Shim JH, Cho NH (2004) PL and EL features of p-type porous silicon prepared by electrochemical anodic etching. Appl Surf Sci 234:256–261CrossRefGoogle Scholar
  39. 39.
    Gfroerer TH (2006) Photoluminescence in analysis of surfaces and interfaces. Encyclopedia of analytical chemistry. Wiley, ChichesterGoogle Scholar
  40. 40.
    Ee DTJ, Sheng CK, Isa MIN (2011) Photoluminescence of porous silicon prepared by chemical etching method. Malaysian J Anal Sci 15:227–231Google Scholar
  41. 41.
    Dzhafarov T, Bayramov A (2017) Porous silicon and solar cells. In: Canham L (ed) Handbook of porous silicon. Springer International Publishing, Cham, pp 1–14Google Scholar
  42. 42.
    Basher MK, Hossain MK, Akand MAR (2019) Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik (Stuttg) 176:93–101. CrossRefGoogle Scholar
  43. 43.
    Anderson WA, Delahoy AE, Milano RA (1974) An 8% efficient layered Schottky-barrier solar cell. J Appl Phys 45:3913–3915. CrossRefGoogle Scholar
  44. 44.
    El-Menyawy EM, Zedan IT, Azab AA (2017) One-pot solvothermal synthesis and characterization of CdS nanotubes decorated with graphene for solar cell applications. J Alloys Compd 695:3429–3434. CrossRefGoogle Scholar
  45. 45.
    Zhang S, Meng F, Søndenå R, et al (2017) Investigation of nanoscale quasi pyramid texture for HIT solar cells using n-type high performance multicrystalline silicon. Energy Procedia. 124:321–330.
  46. 46.
    Dimova-Malinovska D (2000) Application of stain etched porous silicon in c-Si solar cells. Opto-Electron Rev 8:353–355Google Scholar
  47. 47.
    Goodman JW (1975) Statistical properties of laser speckle patterns. In: Dainty JC (ed) Laser speckle and related phenomena. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 9–75Google Scholar
  48. 48.
    Ferraiuoli P, Fenner JW, Narracott AJ (2018) Analysis of speckle pattern quality and uncertainty for cardiac strain measurements using 3D digital image correlation. In: Tavares JMRS, Natal Jorge RM (eds) VipIMAGE 2017. Springer International Publishing, Cham, pp 883–892CrossRefGoogle Scholar
  49. 49.
    Lee S, Lee E (2006) Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells. J Nanosci Nanotechnol 7:3713–3716. CrossRefGoogle Scholar
  50. 50.
    Ramizy A, Hassan Z, Omar K, al-Douri Y, Mahdi MA (2011) New optical features to enhance solar cell performance based on porous silicon surfaces. Appl Surf Sci 257:6112–6117. CrossRefGoogle Scholar
  51. 51.
    Salman KA (2017) Effect of surface texturing processes on the performance of crystalline silicon solar cell. Sol Energy 147:228–231. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations