Advertisement

Silicon

pp 1–6 | Cite as

Novel Mode of Trisiloxane Application Reduces Spider Mite and Aphid Infestation of Fruiting Shrub and Tree Crops

  • Michał Patrzałek
  • Bartosz BojarskiEmail author
  • Marcin W. Lis
  • Janusz Świętosławski
  • Dawid Liszka
  • Wojciech Wieczorek
  • Mieczysław Sajewicz
  • Mariusz Kot
Open Access
Original Paper
  • 21 Downloads

Abstract

Application of pesticides leads to contamination of the natural environment, which entails the necessity to seek solutions that use substances which do not pose ecological hazards. The presented investigations tested the efficacy of a preparation containing organomodified trisiloxane and a cross-linking agent (Siltac EC) to limit the number of two-spotted spider mite (Tetranychus urticae) on the leaves of raspberry (Rubus idaeus) and blackcurrant (Ribes nigrum), as well as the numbers of green apple aphid (Aphis pomi) on apple trees (Malus domestica). The high effectiveness (more than 90%) of Siltac against spider mite on raspberry and blackcurrant leaves was rapid and persisted at least by two- three weeks after spraying. There was observed an inhibition of pest developing (i.e. significant decrease of eggs and larvae). Similar effect occurred per an apple tree shoot and the number of living apple aphids was reduced by more than 93% in comparison to untreated trees. In all experiments, the effectiveness of Siltac was similar and usually longer lasting than control pesticides. Moreover, no phytotoxicity of the tested preparation was observed during the investigations. In conclusion, on the basis of the presented results it was found that Siltac EC could be a good alternative to the currently used plant protection chemicals.

Keywords

Plant protection Alternative method Physical mode of action 

Notes

Acknowledgements

This work was supported by Prof. Łabanowska of the ICB R&D laboratory, ICB Biological Laboratory and Research Institute of Horticulture in Skierniewice, and by Paweł Krawiec of the University of Life Sciences in Lublin, Department of Pomology.

Compliance with Ethical Standards

Conflict of Interest

The five authors of this article (Michał Patrzałek, Janusz Świętosławski, Dawid Liszka, Wojciech Wieczorek, and Mariusz Kot) are employed at ICB Pharma, which has developed the Siltac EC product.

References

  1. 1.
    Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicol 19:207–215CrossRefGoogle Scholar
  2. 2.
    Chauzat M, Carpentier P, Martel A, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec F, Aubert M, Faucon J (2009) Influence of pesticide residues on honey bee (Hymenoptera: Apidae) colony health in France. Environ Entomol 38:514–523CrossRefGoogle Scholar
  3. 3.
    Rabea EI, Nasr HM, Badawy MEI (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine, and spinosad on honey bees (Apis mellifera). Arch Environ Contam Toxicol 58:722–732CrossRefGoogle Scholar
  4. 4.
    Albert A, Drouillard K, Haffner GD, Dixon B (2007) Dietary exposure to low pesticide doses causes long-term immunosuppression in the leopard frog (Rana pipiens). Environ Toxicol Chem 26:1179–1185CrossRefGoogle Scholar
  5. 5.
    Lutnicka H, Bojarski B, Król T, Trybus W, Trybus E, Kopacz-Bednarska A, Witeska M, Pankiewicz L, Pawlak K (2018) Hematological parameters and ultrastructure of hematopoietic tissues in common carp (Cyprinus carpio L.) exposed to low concentration of pendimethalin. Folia Biol 66:121–123CrossRefGoogle Scholar
  6. 6.
    Lutnicka H, Bojarski B, Witeska M, Tombarkiewicz B, Formicki G (2019) Exposure to herbicide linuron results in alterations in hematological profile and stress biomarkers of common carp (Cyprinus carpio). Ecotoxicol 28:69–75CrossRefGoogle Scholar
  7. 7.
    Straw NA, Fielding NJ, Waters A (1996) Phytotoxicity of insecticides used to control aphids on Sitka spruce, Picea sitchensis (Bong.) Carr. Crop Prot 15:451–459CrossRefGoogle Scholar
  8. 8.
    Gressel J (2010) Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manag Sci 67:253–257CrossRefGoogle Scholar
  9. 9.
    Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559Google Scholar
  10. 10.
    Vincent C, Hallman G, Panneton B, Fleurat-Lessard F (2003) Management of agricultural insects with physical control methods. Annu Rev Entomol 48:261–281CrossRefGoogle Scholar
  11. 11.
    Mojsiewicz-Pieńkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes (silicones) – safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:132Google Scholar
  12. 12.
    Han Y, Lu Z, Teng Z, Liang J, Guo Z, Wang D, Han M-Y, Yang W (2017) Unraveling the growth mechanism of silica particles in the Stöber method: in situ seeded growth model. Langmuir 33:5879–5890CrossRefGoogle Scholar
  13. 13.
    Zárragaa R, Cervantesa J, Salazar-Hernandeza C, Wheeler G (2010) Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit 11:138–144CrossRefGoogle Scholar
  14. 14.
    FAOSTAT – Crops Production http://www.fao.org/faostat/en/ Accessed Feb 2019.
  15. 15.
    Tehri K, Gulami R, Geroh M (2014) Host plant responses, biotic stressors and management strategies for the control of Tetranychus utricae Koch (Acarina: Tetranychidae). Agric Rev 35:250–260CrossRefGoogle Scholar
  16. 16.
    Arbab A, Kontodimas DC, Sahragard A (2006) Estimating development of Aphis pomi (DeGeer) (Homoptera: Aphididae) using linear and nonlinear models. Environ Entomol 35:1208–1215CrossRefGoogle Scholar
  17. 17.
    Laznik Ž, Cunia V, Kač M, Tran S (2010) Efficacy of three natural substances against apple aphid (Apis pomi De Geer, Aphididae, Homoptera) under laboratory conditions. Acta Agric Slovenica 97:19–23Google Scholar
  18. 18.
    Rosenheim JA, Hoy M (1989) Confidence intervals for the Abbott’s formula correction of bioassay data for control response. J Econ Entomol 82:331–335CrossRefGoogle Scholar
  19. 19.
    Dahr T, Dey PK, Sarkar PK (2000) Influence of abiotic factors on population build-up of red spider mite, Tetranychus utricae on okra vis a vis evaluation of some new pesticides for their control. Pestol 24:34–37Google Scholar
  20. 20.
    Motazedian N, Ravan S, Bandani AR (2012) Toxicity and repellency effects of three essential oils against Tetranychus utricae Koch (Acari: Tetranychidae). J Agr Sci Tech 14:275–284Google Scholar
  21. 21.
    Eken C, Hakat R (2009) Preliminary evaluation of Cladosporium cladosporioides (Fresen) de Vries in laboratory conditions, as a potential candidate for biocontrol of Tetranychus utricae Koch. World J Microbiol Biotechnol 25:489–492CrossRefGoogle Scholar
  22. 22.
    Milenković S, Marčić D, Ružičić L (2013) Control of green apple aphid (Aphis pomi De Geer) in organic apple production. Pestic Phytomed 28:281–285CrossRefGoogle Scholar
  23. 23.
    Brück E, Elbert A, Fischer R, Krueger S, Kühnhold J, Klueken AM, Nauen R, Niebese JF, Reckmann U, Schnorbach HJ, Steffens R, van Waetermeulen X (2009) Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: biological profile and field performance. Crop Prot 28:838–844CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Michał Patrzałek
    • 1
  • Bartosz Bojarski
    • 2
    Email author
  • Marcin W. Lis
    • 2
  • Janusz Świętosławski
    • 1
  • Dawid Liszka
    • 1
  • Wojciech Wieczorek
    • 1
  • Mieczysław Sajewicz
    • 3
  • Mariusz Kot
    • 1
  1. 1.ICB PharmaJaworznoPoland
  2. 2.Department of Veterinary Science, Animal Reproduction and Welfare, Institute of Veterinary SciencesUniversity of Agriculture in KrakowKrakowPoland
  3. 3.Department of General Chemistry and Chromatography, Institute of Chemistry, Faculty of Mathematics, Physics and ChemistryUniversity of SilesiaKatowicePoland

Personalised recommendations