Advertisement

Silicon

pp 1–9 | Cite as

Effective and Rapid Synthesis of Pyrido[2,3-d:6,5-d′]Dipyrimidines Catalyzed by a Mesoporous Recoverable Silica-Based Nanomaterial

  • Alireza KohzadianEmail author
  • Abdolkarim ZareEmail author
Original Paper
  • 4 Downloads

Abstract

A simple, rapid and effective protocol for the synthesis pyrido[2,3-d:6,5-d′]dipyrimidines has been developed via the one-pot multi-component reaction of arylaldehydes, 2-thiobarbituric acid and NH4OAc using nano-[SiO2-R-NMe2SO3H][Cl] as a mesoporous nanaocatalyst in solvent-free conditions. The remarkable features of this protocol include superiority relative to the reported methods in terms of two or more of these items: the reaction times, yields, the reaction temperature and conditions.

Graphical Abstract

Effective and rapid synthesis of pyrido[2,3-d:6,5-d′]dipyrimidines catalyzed by a mesoporous recoverable silica-based nanomaterial.

Keywords

Pyrido[2,3-d:6,5-d′]dipyrimidines. Nano-[SiO2-R-NMe2SO3H][cl]. Mesoporous nanocatalyst. Multi-component reaction. Solvent-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Research Council of Payame Noor University for the support of this work.

Supplementary material

12633_2019_235_MOESM1_ESM.docx (3.2 mb)
ESM 1 (DOCX 3314 kb)

References

  1. 1.
    C.M. Hussain, A.K. Mishra (2018) Nanotechnology in Environmental Science, John Wiley & Sons. 1Google Scholar
  2. 2.
    Kazemi M, Shiri L (2018) Recoverable Bromine-Containing Nano-Catalysts in Organic Synthesis. Mini-Rev Org Chem 15:86–104CrossRefGoogle Scholar
  3. 3.
    Safajoo N, Mirjalili BBF, Bamoniri A (2019) Fe3O4@nano-cellulose/Cu(ii): a bio-based and magnetically recoverable nano-catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives. RSC Adv 9:1278–1283CrossRefGoogle Scholar
  4. 4.
    N. Fattahi, A. Ramazani, H. Ahankar, P.A. Asiabi, V. Kinzhybalo, Silicon, in press  https://doi.org/10.1007/s12633-018-9954-5
  5. 5.
    Gawande M (2014). Org Chem: Curr Res 3:1000–1037Google Scholar
  6. 6.
    Bodaghifard MA, Hamidinasab M, Ahadi N (2018) Recent Advances in the Preparation and Application of Organic– inorganic Hybrid Magnetic Nanocatalysts on Multicomponent Reactions. Curr Org Chem 22:234–267CrossRefGoogle Scholar
  7. 7.
    Schmies H, Bergmann A, Drnec J, Wang G, Teschner D, Kühl S, Sandbeck DJ, Cherevko S, Gocyla M, Shviro M (2018) Unravelling Degradation Pathways of Oxide-Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions. Adv Energy Mater 8:1701663CrossRefGoogle Scholar
  8. 8.
    Zare A, Merajoddin M, Moosavi-Zare AR, Zarei M, Beyzavi MH, Zolfigol MA (2016) Design and characterization of nano-silica-bonded 3-n-propyl-1-sulfonic acid imidazolium chloride {nano-SB-[PSIM]Cl} as a novel, heterogeneous and reusable catalyst for the condensation of arylaldehydes with β-naphthol and alkyl carbamates. Res Chem Intermed 42:2365–2378CrossRefGoogle Scholar
  9. 9.
    Dezfoolinezhad E, Ghodrati K, Badri R, Silicon, in press,  https://doi.org/10.1007/s12633-018-9977-y
  10. 10.
    Zare A, Sadeghi-Takallo M, Karami M, Kohzadian A (2019) Synthesis, characterization and application of nano-N,N,N′,N′-tetramethyl-N-(silica-n-propyl)-N′-sulfo-ethane-1,2-diaminium chloride as a highly efficient catalyst for the preparation of N,N′-alkylidene bisamides. Res Chem Intermed 45:2999–3018CrossRefGoogle Scholar
  11. 11.
    Zhao G, Tong R (2019) A solvent-free catalytic protocol for the Achmatowicz rearrangement. Green Chem 21:64–68CrossRefGoogle Scholar
  12. 12.
    Dong Z, Zhang X-W, Li W, Li Z-M, Wang W-Y, Zhang Y, Liu W, Liu W-B (2019) Synthesis ofN-Fused Polycyclic Indoles via Ligand-Free Palladium-Catalyzed Annulation/Acyl Migration Reaction. Org Lett 21:1082–1086CrossRefGoogle Scholar
  13. 13.
    Jadhav AM, Balwe SG, Kim JS, Lim KT, Jeong YT (2019) Indium(III)chloride catalyzed synthesis of novel 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and 1H-pyrazolo[1,2-a]pyridazine-5,8-diones under solvent-free condition. Tetrahedron Lett 60:560–565CrossRefGoogle Scholar
  14. 14.
    Abadi SSADM, Abdollahi-Alibeik M (2018). Silicon 10:1667–1678CrossRefGoogle Scholar
  15. 15.
    Tamaddon F, Azadi D (2018) Nicotinium methane sulfonate (NMS): A bio-renewable protic ionic liquid and bi-functional catalyst for synthesis of 2-amino-3-cyano pyridines. J. Mol. Liq 249:789–794CrossRefGoogle Scholar
  16. 16.
    Tripathi BP, Mishra A, Rai P, Pandey YK, Srivastava M, Yadav S, Singh J, Singh J (2017) A green and clean pathway: one pot, multicomponent, and visible light assisted synthesis of pyrano[2,3-c]pyrazoles under catalyst-free and solvent-free conditions. New J Chem 41:11148–11154CrossRefGoogle Scholar
  17. 17.
    Shahid A, Ahmed NS, Saleh TS, Al-Thabaiti SA, Basahel SN, Schwieger W, Mokhtar M (2017) Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process. Catalysts 7:84CrossRefGoogle Scholar
  18. 18.
    M. Karami, A. Zare, Z. Naturforsch. (2018) 73b, 289–293Google Scholar
  19. 19.
    Z. Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, Silicon, in press,  https://doi.org/10.1007/s12633-018-0034-7
  20. 20.
    Mohsenimehr M, Mamaghani M, Shirini F, Sheykhan M, Moghaddam FA (2014) One-pot synthesis of novel pyrido[2,3-d]pyrimidines using HAp-encapsulated-γ-Fe2O3 supported sulfonic acid nanocatalyst under solvent-free conditions. Chin Chem Lett 25:1387–1391CrossRefGoogle Scholar
  21. 21.
    Yang L, Shi D, Chen S, Chai H, Huang D, Zhang Q, Li J (2012) Microwave-assisted synthesis of 2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-ones catalyzed by DBU in aqueous medium. Green Chem 14:945–951CrossRefGoogle Scholar
  22. 22.
    Cordeu L, Cubedo E, Bandrés E, Rebollo A, Sáenz X, Chozas H, Domínguez MV, Echeverría M, Mendivil B, Sanmartin C (2007) Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem 15:1659–1669CrossRefGoogle Scholar
  23. 23.
    Youssif S, El-Bahaie S, Nabih E (1999). J. Chem. Res., Synop 2:112–113CrossRefGoogle Scholar
  24. 24.
    Trumpp-Kallmeyer S, Rubin JR, Humblet C, Hamby JM, Showalter HDH (1998). J. Med. Chem 41:1752–1763CrossRefGoogle Scholar
  25. 25.
    Kovacs JA, Allegra C, Swan J, Drake J, Parrillo J, Chabner B, Masur H (1988) Potent antipneumocystis and antitoxoplasma activities of piritrexim, a lipid-soluble antifolate. Antimicrob Agents Chemother 32:430–433CrossRefGoogle Scholar
  26. 26.
    Smaill JB, Palmer BD, Rewcastle GW, Denny WA, McNamara DJ, Dobrusin EM, Bridges AJ, Zhou H, Showalter HH, Winters RT, Leopold WR, Fry DW, Nelson JM, Slintak V, Elliot WL, Roberts BJ, Vincent PW, Patmore SJ (1999). J. Med. Chem 42:1803–1815CrossRefGoogle Scholar
  27. 27.
    Furukawa K, Hasegawa T (1996). Chem. Abstr 124:289568cGoogle Scholar
  28. 28.
    Kolla V, Deyanov A, Nazmetdinov FY, Kashina Z, Drovosekova L (1993) Investigation of the anti-inflammatory and analgesic activity of 2-substituted 1-aryl-6-carboxy(carbethoxy)-7-methyl-4-oxo-1, 4-dihydropyrido[2,3-d]pyrimidines. Pharm Chem J 27:635–636CrossRefGoogle Scholar
  29. 29.
    Rosowsky A, Mota CE, Queener SF (1995). J. Heterocycl. Chem 32:335–340CrossRefGoogle Scholar
  30. 30.
    Ellingboe JW (1996). N.J. Princeton, Chem. Abstr 124:176134qGoogle Scholar
  31. 31.
    Donkor IO, Klein CL, Liang L, Zhu N, Bradley E, Clark AM (1995). J. Pharm. Sci 84:661–664CrossRefGoogle Scholar
  32. 32.
    Corre LL, Girard AL, Aubertin J, Radvanyi F, Lasselin CB, Jonquoy A, Mugniery E, Mallet LL, Busca P, Merrer YL (2010) Synthesis and biological evaluation of a triazole-based library of pyrido[2,3-d]pyrimidines as FGFR3 tyrosine kinase inhibitors. Org Biomol Chem 8:2164–2173CrossRefGoogle Scholar
  33. 33.
    Rawal RK, Tripathi R, Katti SB, Pannecouque C, Clercq ED (2007) Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg Med Chem 15:3134–3142CrossRefGoogle Scholar
  34. 34.
    Deyanov A, Niyazov RK, Nazmetdinov FY, Syropyatov BY, Kolla V, Konshin M (1991) Synthesis and biological activity of amides and nitriles of 2-arylamino-5-carboxy(carbethoxy)-6-methylnicotinic acids and 1-aryl-6-carbethoxy-7-methyl-4-oxo-1,4-dihydropyrido[2,3-d]pyrimidines. Pharm Chem J 25:248–250CrossRefGoogle Scholar
  35. 35.
    Pastor A, Alajarin R, Vaquero JJ, Alvarez-Builla J, de Casa-Juana MF, Sunkel C, Priego JG, Fonseca I, Sanz-Aparicio J (1994) Synthesis and Structure of New Pyrido[2,3-d]pyrimidine Derivatives with Calcium Channel Antagonist Activity. Tetrahedron. 50:8085–8098CrossRefGoogle Scholar
  36. 36.
    El-Gazzar ABA, Hafez HN (2009) Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents. Bioorg Med Chem Lett 19:3392–3397CrossRefGoogle Scholar
  37. 37.
    Gangjee A, Zhu Y, Queener SF (1998). J. Med. Chem 41:4533–4541CrossRefGoogle Scholar
  38. 38.
    Zare A, Kohzadian A, Abshirini Z, Sajadikhah SS, Phipps J, Beyzavi MH (2019) Nano-2-(dimethylamino)-N-(silica-n-propyl)-N,N-dimethylethanaminium chloride as a novel basic catalyst for the efficient synthesis of pyrido[2,3-d:6,5-d′]dipyrimidines. New J Chem 43:2247–2257CrossRefGoogle Scholar
  39. 39.
    Mamaghani M, Moslemi L, Badrian A (2018). Mod Org Chem Res 3:8CrossRefGoogle Scholar
  40. 40.
    Naeimi H, Nejadshafiee V, Islami MR (2016) Iron (III)-doped, ionic liquid matrix-immobilized, mesoporous silica nanoparticles: Application as recyclable catalyst for synthesis of pyrimidines in water. Micropor Mesopor Mater 227:23–30CrossRefGoogle Scholar
  41. 41.
    Naeimi H, Didar A, Mol J (2017). Struct. 1137:626–633Google Scholar
  42. 42.
    Naeimi H, Didar A, Rashid Z, Zahraie Z (2017) Sonochemical synthesis of pyrido[2,3-d:6,5-d′]-dipyrimidines catalyzed by [HNMP]+[HSO4]− and their antimicrobial activity studies. J Antibiot 70:845–852CrossRefGoogle Scholar
  43. 43.
    Naeimi H, Didar A (2017) Efficient sonochemical green reaction of aldehyde, thiobarbituric acid and ammonium acetate using magnetically recyclable nanocatalyst in water. Ultrason Sonochem 34:889–895CrossRefGoogle Scholar
  44. 44.
    Naeimi H, Didar A, Rashid Z, Iran J (2017). Chem Soc 14:377–385Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations