, Volume 12, Issue 1, pp 117–124 | Cite as

Structural Characterizations and Mechanical Behavior of Activated Clay-Based Si5(PO4)6O and SiP2O7 Compounds

  • Mohamed KhabbouchiEmail author
  • Khaled Hosni
  • Mohamed Mezni
  • Ezzeddine Srasra
Original Paper


Well-crystalline and low-cost silico-phosphate materials were prepared by a simple procedure, different from that previously reported by sol-gel method. In this case, the Si5(PO4)6O and SiP2O7 compound have been synthesized from the mixtures of activated clay –H3PO4 (70 wt% H3PO4 and 80 wt% H3PO4). The structural changes induced by thermal treatment, have been studied by X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, 31P, 29Si MAS-NMR techniques and by the mechanical Brazilian test. The XRD results showed that the well-crystalline Si5(PO4)6O material has been synthesized from a heat treatment at 800 °C. Meanwhile, the well- crystalline SiP2O7 material has been obtained after a heat treatment at 500 °C. These results were confirmed by 31P and 29Si MAS-NMR. the mechanical Brazilian test results showed that the silicophosphates SiP2O7 has high mechanical properties compared to Si5(PO4)6O. At 900 °C, the mechanical strength has increased from 6.58 for Si5O(PO4)6 to 21.02 MPa for SiP2O7.


Activated kaolin Amorphous silica Phosphoric acid Silicophosphate, mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Faculty of Sciences of Tunis for its collaboration.


  1. 1.
    Gambling WA, Payne DN, Hammond, CR, Norman, SR (1976) Optical fibres based on phosphosilicate glass. PROC. IE 123. CrossRefGoogle Scholar
  2. 2.
    Niida H, Takahashi M, Uchino T, Yoko T (2002) Preparation and structure of organic-inorganic hybrid precursors for new type low-melting glasses. J Non-Cryst Solids 306:292–299. CrossRefGoogle Scholar
  3. 3.
    Krawietz TR, Lin P, Lotterhos KE, Torres PD, Barich DH, Clearfield A, Haw JF (1998) Solid phosphoric acid catalyst : a multinuclear NMR and theoretical study. J Am Chem Soc 120:8502–8511. CrossRefGoogle Scholar
  4. 4.
    Massiot P, Centeno MA, Carrizosa I, Odriozola JA (2001) Thermal evolution of sol-gel-obtained phosphosilicate solids (SiPO). J Non-Cryst Solids 292:158–166. CrossRefGoogle Scholar
  5. 5.
    Abdelghany AM, Zeyada HM, ElBatal HA, Fetouh RE (2017) AC conductivity and dielectric behavior of Silicophosphate glass doped by Nd2O3. Silicon 9:347–354. CrossRefGoogle Scholar
  6. 6.
    Styskalik A, Skoda D, Moravec Z, Barnesc CE, Pinkas J (2016) Surface reactivity of non-hydrolytic silicophosphate xerogels: a simple method to create Brønsted or Lewis acid sites on porous supports. New J Chem 40:3705–3715CrossRefGoogle Scholar
  7. 7.
    Sitarz M, Fojud Z, Olejniczak Z (2008) The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR. Phys Chem Glasses 26:107–110. CrossRefGoogle Scholar
  8. 8.
    Poojary DM, Borade RB, Clearfield A (1993) Structural characterization of silicon orthophosphate. Inorg Chim Acta 208:23–29. CrossRefGoogle Scholar
  9. 9.
    Khabbouchi M, Hosni K, Mezni M, Srasra E (2018) Simplified synthesis of silicophosphate materials using activated metakaolin as a natural source of active silica. Appl Clay Sci 158:169–176CrossRefGoogle Scholar
  10. 10.
    Dudkin BN, Loukhina IV, Avvakumov ÅG, Isupov VP (2004) Application of mechanochemical treatment to disintegration of kaolinite with sulphuric acid. Chem Sustain Dev 12:327–330Google Scholar
  11. 11.
    Pilipchatin LD (2001) Sintering of Vladimirovskoe kaolin with high melting clay. Glas Ceram 58:27–28CrossRefGoogle Scholar
  12. 12.
    Sudakas LG, Sinina LM (1971) Regulation of the time of binding and hardening of phosphate binders. Inorg Mater 7:537–538Google Scholar
  13. 13.
    Douiri H, Louati S, Baklouti S, Arous M, Fakhfakh Z (2014) Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4. Mater Lett 116:9–12. CrossRefGoogle Scholar
  14. 14.
    Nmiri A, Hamdi N, Duc M, Srasra E (2016) Synthesis and characterization of kaolinite-based geopolymer: alkaline activation effect on calcined kaolinitic clay at different temperatures. J Mater Environ Sci 7:1–18Google Scholar
  15. 15.
    Kuang W, Facey GA, Detellier C (2004) Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clay Clay Miner 52:635–642. CrossRefGoogle Scholar
  16. 16.
    Khabbouchi M, Hosni K, Mezni M, Zanelli C, Doggy M, Dondi M, Srasra E (2017) Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature. Appl Clay Sci 146:510–516. CrossRefGoogle Scholar
  17. 17.
    Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surfaces A Physicochem Eng 363:98–104. CrossRefGoogle Scholar
  18. 18.
    Mofakham EB, Ghaee A, Mashak A, Razzaghi-Abyaneh M (2018) Progesterone release from PDMS-modified silica Xerogels containing ag nanoparticles. Silicon 4:1231–1783. CrossRefGoogle Scholar
  19. 19.
    Madejova J (2003) FTIR technique in clay mineral studies. Vib Spectrosc 31:1–10CrossRefGoogle Scholar
  20. 20.
    Massiot P, Centeno MA, Carrizosa I, Odriozola JA (2001) Thermal evolution of solgel- obtained phosphosilicate solids (SiPO). J Non-Cryst Solids 292:158–166. CrossRefGoogle Scholar
  21. 21.
    Coelho C, Azaïs T, Bonhomme-Coury L, Laurent G, Bonhomme C (2007) Efficiency of the refocused 31P-29Si MAS-J-INEPT NMR experiment for the characterization of Silicophosphate crystalline phases and amorphous gels. Inorg Chem 46:1379–1387. CrossRefPubMedGoogle Scholar
  22. 22.
    Bonhomme C, Gervais C, Coelho C, Pourpoint F, Azaïs T, Bonhomme-Coury L, Babonneau F, Jacob G, Ferrari M, Canet D, Yates JR, Pickard CJ, Joyce SA, Mauri F, Massiot D (2010) New perspectives in the PAW/GIPAW approach: JP-O-Si coupling constants, antisymmetric parts of shift tensors and NQR predictions. Magn Reson Chem 48:86–102. CrossRefGoogle Scholar
  23. 23.
    Lejeune C, Coelho C, Bonhomme-Coury L, Azaïs T, Maquet J, Bonhomme C (2005) Studies of silicophosphate derivatives by 31P- 29Si CP MAS NMR. Solid State Nucl Magn Reson 27:242–246. CrossRefPubMedGoogle Scholar
  24. 24.
    Stoch L, Sroda M (1999) Infrared spectroscopy in the investigation of oxide glasses structure. J Mol Struct 11:77–84CrossRefGoogle Scholar
  25. 25.
    Aguiar H, Serra J, González P, León B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids 355(8):475–480CrossRefGoogle Scholar
  26. 26.
    Szumera M, Waclawska I, Mozgawa W, Sitarz M (2005) Spectroscopic study of biologically active glasses. J Mol Struct 744:609–614CrossRefGoogle Scholar
  27. 27.
    Paraschiv GL, Muñoz F, Tricot G, Mascaraque N, Jensen LR, Yue Y, Smedskjaer MM (2017) Mixed alkali silicophosphate oxynitride glasses: structure-property relations. J Non-Cryst Solids 462:51–64. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mohamed Khabbouchi
    • 1
    Email author
  • Khaled Hosni
    • 1
  • Mohamed Mezni
    • 1
  • Ezzeddine Srasra
    • 1
  1. 1.CNRSM, National Center of Materials Science ResearchSolimanTunisia

Personalised recommendations