pp 1–7 | Cite as

Performance Improvement and Analysis of PtSi Schottky Barrier p-MOSFET Based on Charge Plasma Concept for Low Power Applications

Original Paper


This work reports a platinum silicide (PtSi) Schottky Barrier (SB) p-MOSFET (SB p-MOSFET) using charge plasma concept for low power applications. Here, we use two different materials to form source of the device. The source consists of two parts as primary source and extension. To consist source, PtSi and for extension, platinum metal is used. The proposed device is named as charge plasma (CP) SB p-MOSFET (CP SB p-MOSFET). The use of platinum extension induces the hole plasma near the source end. As a result, increased band bending reduces the SB width. This enhances the DC performance of the device. In addition, we have compared the DC and analog/RF performance of both the proposed device and the conventional SB p-MOSFET. It is observed that the proposed device exhibits improvement in on-state current (Ion), on- to off current ratio (ION/IOFF), transconductance (gm), cut-off frequency (ft), product of gain and bandwidth (fa) and transconductance generation factor (gm/Ids). We also optimized the performance of the device by modulating the work function and length of metal employed for extension. Moreover, the proposed device eliminated the doping, lowers the thermal budget requirement and unaffected from fluctuations due to randomly distributed dopant.


Schottky barrier Charge plasma Platinum silicide Random dopant fluctuations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7):1725–1733CrossRefGoogle Scholar
  2. 2.
    Doria RT, Pavanello MA, Trevisoli RD, de Souza M, Lee CW, Ferain I, Akhavan ND, Yan R, Razavi P, Yu R, Kranti A, Colinge JP (2011) Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58(8):2511–2519CrossRefGoogle Scholar
  3. 3.
    Gopalakrishnan K, Grin PB, Plummer JD (2002) I-MOS: A novel semi-conductor device with a subthreshold slope lower than kT/q, international Electron devices meeting, San Francisco, CA, USA, pp. 8–11Google Scholar
  4. 4.
    Chau R (2005) Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Electron Devices 4(2):153–158Google Scholar
  5. 5.
    Priya GL, Balamurugan NB (2019) New dual material double gate junctionless tunnel FET: subthreshold modeling and simulation. Int J Electron Commun 99:130–138CrossRefGoogle Scholar
  6. 6.
    Gracia D, Nirmal D, JackulineMoni D (2018) Impact of leakage cur-rent in germanium channel based DMDG TFET using drain-gate underlap technique. Int J Electron Commun 96:164–169CrossRefGoogle Scholar
  7. 7.
    Kale S, Banchhor S, Kondekar PN (2015) Performance study of high-k gate and spacer dielectric dopant segregated Schottky barrier SOI MOSFET, 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, 1142–1145Google Scholar
  8. 8.
    Chaudhry A, Kumar MJ (2004) Controlling short-channel e ects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans Device Mater Reliab 4(1):99–109CrossRefGoogle Scholar
  9. 9.
    Khaki rooz A et al., (2010) Fully depleted extremely thin SOI for mainstream 20 nm low-power technology and beyond, In IEEE Int Solid-State Circuits Conf Dig Tech Papers (ISSCC) 152–153Google Scholar
  10. 10.
    Chiang M-H, Lin J-N, Kim K, Chuang C-T (2007) Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8):2055–2060CrossRefGoogle Scholar
  11. 11.
    Afzalian A, Flandre D (2012) Discrete random dopant fluctuation impact on nanoscale dopant-segregated Schottky-barrier nanowires. IEEE Electron Device Lett. 33:1228–1230CrossRefGoogle Scholar
  12. 12.
    Ostling M, Luo J, Gudmundsson V, Hellstrom P-E, Malm BG (2010) Nanoscaling of MOSFETs and the implementation of Schottky barrier S/D contacts, in Proc 27th Int Conf Microelectron (MIEL) 9–13Google Scholar
  13. 13.
    Jhaveri R, Nagavarapu V, Woo JCS (2009) Asymmetric Schottky tunneling source SOI MOSFET design for mixed-mode applications. IEEE Trans. Electron Devices 56(1):93–99CrossRefGoogle Scholar
  14. 14.
    Jhaveri R, Woo JCS (2006) Schottky tunneling source MOSFET design for mixed mode and analog applications, in proc. 36th Eur. Solid-state Device res. Conf., Montreux, Switzerland 295–298Google Scholar
  15. 15.
    Kale S, Kondekar PN (2017) Design and investigation of dielectric engineered dopant segregated Schottky barrier MOSFET with NiSi source/drain. IEEE Trans. Electron Devices 64(11):4400–4407CrossRefGoogle Scholar
  16. 16.
    Guin S, Chattopadhyay A, Karmakar A, Mallik A (2014) Impact of a pocket doping on the device performance of a Schottky tunneling field effect transistor. IEEE Trans. Electron Devices 61(7):2515–2522CrossRefGoogle Scholar
  17. 17.
    Afzalian A, Flandre D (2011) Computational study of dopant segregated nanoscale Schottky barrier MOSFETs for steep slope, low SD-resistance and high on-current gate modulated resonant tunneling FETs. Solid State Electron 65(1):123–129CrossRefGoogle Scholar
  18. 18.
    Larson JM, Snyder JP (2006) Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans Electron Dev 53(5):1048–1058CrossRefGoogle Scholar
  19. 19.
    Kale S, Kondekar PN (2016) Ferroelectric Schottky barrier tunnel FET with gate-drain underlap: proposal and investigation. Superlattices Microstructures 89:225–230CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, Z. Qiu, P.-E. Hellstrm Hellstrom, G. Malm, J. Olsson, J. Lu, M. stling, S.-L. Zhang, SB-MOSFETs in UTB-SOI Featuring PtSi Source/Drain With Dopant segregation, 29(1) (2008) 125–127Google Scholar
  21. 21.
    Choi C-j, Jang M-g, Kim Y-y, Jun M-s, Kim T-y, Lee S-j (2008) Platinum silicided PtSi Schottky barrier metal-oxide-semiconductor field-effect transistors scaled down to 20 nm. Electron Lett 44(2):159–160CrossRefGoogle Scholar
  22. 22.
    G. Larrieu, E. Dubois, Integration of PtSi-based Schottky-barrier p-MOSFETs with a midgap tungsten gate, 52(12) (2005) 2720–2726Google Scholar
  23. 23.
    Kinoshita A, Tsuchiya Y, Yagishita A, Uchida K, Koga J (2004) Solu-tion for high performance Schottky-source/drain MOSFETs: Schottky-barrier height engineering with dopant-segregation technique, in VLSI Symp. Tech. Dig., pp. 168–169Google Scholar
  24. 24.
    Knoch J, Zhang M, Zhao T, Lenk SS (2005) E effctive Schottky barrier lowering in silicon-on-insulator Schottky-barrier metal-oxide-semiconductor field-effect transistor using dopant segregation. Appl Phys Lett 87(26):263505–263507CrossRefGoogle Scholar
  25. 25.
    Kale S, Kondekar PN (2015) Design and investigation of double gate Schottky barrier MOSFET using gate engineering. Micro and Nano Lett. 10(12):707–711CrossRefGoogle Scholar
  26. 26.
    Lide DR, (2008) CRC Handbook on Chemistry and Physics, 89th ed. New York: Taylor and Francis, pp. 12–114Google Scholar
  27. 27.
    Hueting RJE, Rajasekharan B, Salm C, Schmitz J (2008) The charge plasma P-N diode. IEEE Electron Device Lett. 29(12):1367–1369CrossRefGoogle Scholar
  28. 28.
    Kumar MJ, Nadda K (2012) Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4):962–967CrossRefGoogle Scholar
  29. 29.
    Device Simulation Software ATLAS (2014) Santa Clara. CA, USAGoogle Scholar
  30. 30.
    Ieong M, Solomon PM, Laux SE, Wong H-SP, Chidambarrao D (Dec. 1998) Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model. Electron devices meeting, 1998. IEDM '98. Technical digest., international, pp.733–736, 6–9Google Scholar
  31. 31.
    Matsuzawa K, Uchida K, Nishiyama A (2000) A Uni ed Simulation of Schottky and Ohmic contacts. IEEE Trans. Electron Dev. 47(01):103–108CrossRefGoogle Scholar
  32. 32.
    Kale S, Kondekar PN (2015) Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron Lett. 51(19):1536–1538CrossRefGoogle Scholar
  33. 33.
    Kale S, Kondekar PN (2015) Ambipolar leakage suppression in Ge n-channel Schottky barrier MOSFET. IETE J Res 61(4):323–328CrossRefGoogle Scholar
  34. 34.
    Vega RA, Liu TJK (2008) A comparative study of dopant-segregated Schottky and raised source/drain double-gate MOSFETs. IEEE Trans. Electron Dev 55(10):2665–2677CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMadanapalle Institute of Technology & ScienceMadanapalleIndia

Personalised recommendations