Advertisement

Silicon

, Volume 12, Issue 3, pp 561–576 | Cite as

Electric Field and Light Field Modulated Josephson Effect in Silicene-Based SNS Josephson Junction: Andreev Reflection and Free Energy

  • Chen-Huan WuEmail author
Original Paper

Abstract

We investigate the Josephson effect in superconductor-normal-superconductor junction (SNS) base on an unbiased silicene under the perpendicular electric field and off-resonance circularly polarized light both analytically and numerically. The Andreev reflection (during the subgap transport), free energy, Josephson current, and the reversal of the Josephson effect are explored. The Andreev reflection is complete (for tunnel limit) in the NS interface even for the clean sample and without the Fermi wave vector mismatch, which is opposite to the case of ferromagnet-superconductor interface. The dynamical polarization of the related degrees of freedom is also related to the 0 − π transition and the generation of ϕ0-junction. In the short junction limit, the approximated results about the Andreev level and free energy are also discussed. Beside the low-energy limit of the tight-binding model, the finite-size effect is needed to be taken into account. The effect of the time-dependent drive and the Green’s function method also represented in the end of this paper.

Keywords

Josephson effect Silicene Andreev bound state Josephson current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon[J]. Phys Rev Lett 108(15):155501PubMedGoogle Scholar
  2. 2.
    Bobkova IV, Bobkov AM, Zyuzin AA et al (2016) Magnetoelectrics in disordered topological insulator Josephson junctions[J]. Physical Review B 94(13):134506Google Scholar
  3. 3.
    Zyuzin A, Alidoust M, Loss D (2016) Josephson junction through a disordered topological insulator with helical magnetization[J]. Phys Rev B 93(21):214502Google Scholar
  4. 4.
    Alidoust M (2018) Self-biased current, magnetic interference response, and superconducting vortices in tilted Weyl semimetals with disorder[J]. Phys Rev B 98(24):245418Google Scholar
  5. 5.
    Alidoust M, Willatzen M, Jauho AP (2018) Fraunhofer response and supercurrent spin switching in black phosphorus with strain and disorder[J]. Phys Rev B 98(18):184505Google Scholar
  6. 6.
    Zhi J, Kang N, Li S et al (2019) Supercurrent and Multiple Andreev Reflections in InSb Nanosheet SNS Junctions[J]. Physica status solidi (b), 1800538. https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.201800538
  7. 7.
    Island JO, Steele GA, van der Zant HSJ et al (2016) Thickness dependent interlayer transport in vertical MoS2 Josephson junctions[J]. 2D Mater 3(3):031002Google Scholar
  8. 8.
    Ló pez A, Scholz A, Santos B et al (2015) Photoinduced pseudospin effects in silicene beyond the off-resonant condition[J]. Phys Rev B 91(12):125105Google Scholar
  9. 9.
    Wu CH (2018) Electronic transport and the related anomalous effects in silicene-like hexagonal lattice[J]. arXiv:1807.10898
  10. 10.
    Wu CH (2018) Dynamical polarization, plasmon model, and the Friedel oscillation of the screened potential in doped Dirac and Weyl system[J]. arXiv:1809.00169
  11. 11.
    Golikova TE, Wolf MJ, Beckmann D et al (2014) Nonlocal supercurrent in mesoscopic multiterminal SNS Josephson junction in the low-temperature limit[J]. Phys Rev B 89(10):104507Google Scholar
  12. 12.
    Kuzmanovski D, Linder J, Black-Schaffer A (2016) Quantum ground state control in superconductor-silicene structures: 0- transitions, 0-junctions, and Majorana bound states[J]. Phys Rev B 94(18):180505Google Scholar
  13. 13.
    Williams JR, Bestwick AJ, Gallagher P et al (2012) Unconventional Josephson effect in hybrid superconductor-topological insulator devices[J]. Phys Rev Lett 109(5):056803PubMedGoogle Scholar
  14. 14.
    Asano Y, Tanaka Y, Golubov AA (2007) Josephson effect due to odd-frequency pairs in diffusive half metals[J]. Phys Rev Lett 98(10):107002PubMedGoogle Scholar
  15. 15.
    Zhou X, Jin G (2016) Light-modulated 0-π transition in a silicene-based Josephson junction[J]. Phys Rev B 94(16):165436Google Scholar
  16. 16.
    Alidoust M, Linder J (2013) φ-state and inverted Fraunhofer pattern in nonaligned Josephson junctions[J]. Phys Rev B 87(6):060503Google Scholar
  17. 17.
    Carvalho BR, Wang Y, Mignuzzi S, et al. (2017) Intervalley scattering by acoustic phonons in two-dimensional MoS 2 revealed by double-resonance Raman spectroscopy[J]. Nat commun 8:14670PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rainis D, Taddei F, Dolcini F et al (2009) Andreev reflection in graphene nanoribbons[J]. Phys Rev B 79(11):115131Google Scholar
  19. 19.
    Szombati DB, Nadj-Perge S, Car D, et al. (2016) Josephson ? 0-junction in nanowire quantum dots[J]. Nat Phys 12(6):568Google Scholar
  20. 20.
    Linder J, Yokoyama T (2014) Superconducting proximity effect in silicene: Spin-valley-polarized Andreev reflection, nonlocal transport, and supercurrent[J]. Phys Rev B 89(2):020504Google Scholar
  21. 21.
  22. 22.
    Wu CH (2018) Dynamical polarization and the optical response of silicene and related materials[J]. Results Phys 11:665–673Google Scholar
  23. 23.
    Wu CH (2018) Many-electron effect to the dynamical polarization of silicene-like two-dimension Dirac materials[J]. arXiv:1808.06263
  24. 24.
    Wu CH (2018) Dynamical current-current correlation in two-dimensional parabolic Dirac systems[J]. Physics Letters A.  https://doi.org/10.1016/j.physleta.2018.11.019 Google Scholar
  25. 25.
    Wu CH (2019) Integer quantum Hall conductivity and longitudinal conductivity in silicene under the electric field and magnetic field[J]. The European Physical Journal B: Condensed Matter and Complex Systems.  https://doi.org/10.1140/epjb/e2018-90343-x
  26. 26.
    Wu CH (2018) Electronic transport and dynamical polarization in bilayer silicene-like systems[J]. Results Phys 11:1182–1191Google Scholar
  27. 27.
    Annunziata G, Enoksen H, Linder J et al (2011) Josephson effect in S/F/S junctions: Spin bandwidth asymmetry versus Stoner exchange[J]. Phys Rev B 83(14):144520Google Scholar
  28. 28.
    Suzuura H, Ando T (2002) Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice[J]. Phys Rev Lett 89(26):266603PubMedGoogle Scholar
  29. 29.
    Tao L, Cinquanta E, Chiappe D et al (2015) Silicene field-effect transistors operating at room temperature[J]. Nat Nanotechnol 10(3):227PubMedGoogle Scholar
  30. 30.
    Claassen M, Jia C, Moritz B, et al. (2016) All-optical materials design of chiral edge modes in transition-metal dichalcogenides[J]. Nat Commun 7:13074PubMedPubMedCentralGoogle Scholar
  31. 31.
    Torres L E F F (2005) Mono-parametric quantum charge pumping: Interplay between spatial interference and photon-assisted tunneling[J]. Phys Rev B 72(24):245339Google Scholar
  32. 32.
    Fu L, Kane CL (2009) Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction[J]. Phys Rev B 79(16):161408Google Scholar
  33. 33.
    Kashiwaya S, Tanaka Y (2000) Tunnelling effects on surface bound states in unconventional superconductors[J]. Rep Prog Phys 63(10):1641Google Scholar
  34. 34.
    Sinha D, Kar S (2018) Andreev tunneling and Josephson current in light irradiated graphene[J]. Current Applied PhysicsGoogle Scholar
  35. 35.
    De Jong MJM, Beenakker CWJ (1995) Andreev reflection in ferromagnet-superconductor junctions[J]. Phys Rev Lett 74(9):1657PubMedGoogle Scholar
  36. 36.
    Jin LH, Wang XQ, Yi GY (2019) Josephson effects in one junction with one s-wave superconductor and two topological superconductors[J]. Modern Physics Letters B 33:1950019Google Scholar
  37. 37.
    Sun D, Liu J (2018) Quench dynamics of the Josephson current in a topological Josephson junction[J]. Phys Rev B 97(3):035311Google Scholar
  38. 38.
    Alidoust M, Willatzen M, Jauho AP (2018) Strain-engineered Majorana zero energy modes and 0 Josephson state in black phosphorus[J]. Phys Rev B 98(8):085414Google Scholar
  39. 39.
    Keizer RS, Goennenwein STB, Klapwijk TM, et al. (2006) A spin triplet supercurrent through the half-metallic ferromagnet CrO 2[J]. Nature 439(7078):825PubMedGoogle Scholar
  40. 40.
    Beenakker CWJ (2008) Colloquium: Andreev reflection and Klein tunneling in graphene[J]. Rev Mod Phys 80(4):1337Google Scholar
  41. 41.
    Olund CT, Zhao E (2012) Current-phase relation for Josephson effect through helical metal[J]. Phys Rev B 86(21):214515Google Scholar
  42. 42.
    Zhou X, Jin G (2017) Silicene-based and 0 Josephson junctions[J]. Phys Rev B 95(19):195419Google Scholar
  43. 43.
    Linder J, Zareyan M, Sudb? A (2009) Spin-switch effect from crossed Andreev reflection in superconducting graphene spin valves[J]. Phys Rev B 80(1):014513Google Scholar
  44. 44.
    Golubov AA, Brinkman A, Tanaka Y et al (2009) Andreev spectra and subgap bound states in multiband superconductors[J]. Phys Rev Lett 103(7):077003PubMedGoogle Scholar
  45. 45.
    Kumar S, Anija M, Kamaraju N et al (2009) Femtosecond carrier dynamics and saturable absorption in graphene suspensions[J]. Appl Phys Lett 95(19):191911Google Scholar
  46. 46.
    Boross P, Pályi A (2015) Valley relaxation in graphene due to charged impurities[J]. Physical Review B 92 (3):035420Google Scholar
  47. 47.
    Rachel S, Ezawa M (2014) Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene[J]. Phys Rev B 89(19):195303Google Scholar
  48. 48.
    An XT, Zhang YY, Liu JJ et al (2012) Spin-polarized current induced by a local exchange field in a silicene nanoribbon[J]. J Phys 14(8):083039Google Scholar
  49. 49.
    Kulik IO (1969) . Zh é ksp Teor Fiz 57:1745Google Scholar
  50. 50.
    Kulik IO (1970) . Sov. Phys[J]. JETP 30:944Google Scholar
  51. 51.
    Missault N, Vasilopoulos P, Vargiamidis V et al (2015) Spin-and valley-dependent transport through arrays of ferromagnetic silicene junctions[J]. Phys Rev B 92(19):195423Google Scholar
  52. 52.
    Minutillo M, Giuliano D, Lucignano P et al (2018) Anomalous Josephson effect in S/SO/F/S heterostructures[J]. Phys Rev B 98(14):144510Google Scholar
  53. 53.
    Salehi M, Jafari SA (2018) Topological phase transition of Dirac superconductors in the presence of pseudo-scalar pairings[J]. Physica C: Supercond Appl 549:66–68Google Scholar
  54. 54.
    Beiranvand R, Hamzehpour H, Alidoust M (2016) Tunable anomalous Andreev reflection and triplet pairings in spin-orbit-coupled graphene[J]. Phys Rev B 94(12):125415Google Scholar
  55. 55.
    Buzdin A (2008) Direct coupling between magnetism and superconducting current in the Josephson 0 junction[J]. Phys Rev Lett 101(10):107005PubMedGoogle Scholar
  56. 56.
    Kreula JM, Valtolina G, Törmä P (2017) Spin-asymmetric Josephson plasma oscillations[J]. Phys Rev A 95(1):013634Google Scholar
  57. 57.
    Wu CH (2018) Attractive polaron in a Dirac/Weyl system within the ladder approximation[J]. arXiv:1812.04833
  58. 58.
    Wu CH (2019) Attractive fermi polaron in a semi-Dirac system within ladder approximation[J]. arXiv:1901.07881
  59. 59.
    Pastawski HM, Medina E (2001) arXiv:cond-mat/0103219
  60. 60.
    Kitagawa T, Oka T, Brataas A et al (2011) Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels[J]. Phys Rev B 84(23):235108Google Scholar
  61. 61.
    Ezawa M (2013) Photoinduced topological phase transition and a single Dirac-cone state in silicene[J]. Phys Rev Lett 110(2): 026603PubMedGoogle Scholar
  62. 62.
    Kumar U, Kumar V, Enamullah et al (2018) Bloch-Siegert shift in Dirac-Weyl fermionic systems[C]//AIP Conference Proceedings. AIP Publ 1942(1):120005Google Scholar
  63. 63.
    Kar S, Basu B (2018) Photoinduced entanglement in a magnonic Floquet topological insulator[J]. Phys Rev B 98(24):245119Google Scholar
  64. 64.
    Bergeret FS, Tokatly IV (2013) Singlet-triplet conversion and the long-range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields[J]. Phys Rev Lett 110(11):117003PubMedGoogle Scholar
  65. 65.
    Richard C, Houzet M, Meyer JS (2013) Superharmonic long-range triplet current in a diffusive Josephson junction[J]. Phys Rev Lett 110(21):217004PubMedGoogle Scholar
  66. 66.
    Alidoust M, Halterman K (2015) Long-range spin-triplet correlations and edge spin currents in diffusive spin–orbit coupled SNS hybrids with a single spin-active interface[J]. J Phys: Condens Matter 27(23):235301Google Scholar
  67. 67.
    Hübler F, Wolf MJ, Scherer T et al (2012) Observation of Andreev bound states at spin-active interfaces[J]. Phys Rev Lett 109(8):087004PubMedGoogle Scholar
  68. 68.
    Alidoust M, Linder J, Rashedi G et al (2010) Spin-polarized Josephson current in superconductor/ferromagnet/superconductor junctions with inhomogeneous magnetization[J]. Phys Rev B 81 (1):014512Google Scholar
  69. 69.
    Eckstein M, Kollar M (2008) Theory of time-resolved optical spectroscopy on correlated electron systems[J]. Phys Rev B 78(20):205119Google Scholar
  70. 70.
    Kamenev A, Levchenko A (2009) Keldysh technique and non-linear and sigma;-model: basic principles and applications[J]. Adv Phys 58(3):197–319Google Scholar
  71. 71.
    Eckstein M (2018) Non-equilibrium Dynamical Mean-Field Theory[M]. Springer International Publishing, EcksteinGoogle Scholar
  72. 72.
    Ambegaokar V (2018) The Green’s function method[M]// Superconductivity. Routledge, Evanston, pp 259–319Google Scholar
  73. 73.
    Gor’kov LP (1959) Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity[J]. Sov Phys JETP 9(6):1364–1367Google Scholar
  74. 74.
    Alidoust M, Linder J, Rashedi G et al (2010) Spin-polarized Josephson current in superconductor/ferromagnet/superconductor junctions with inhomogeneous magnetization[J]. Phys Rev B 81 (1):014512Google Scholar
  75. 75.
    Serene JW, Rainer D (1983) The quasiclassical approach to superfluid 3He[J]. Phys Rep 101(4):221–311Google Scholar
  76. 76.
    Kita T (2015) Statistical mechanics of superconductivity[M]. Springer, JapanGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations