pp 1–16 | Cite as

Precise Description of the Variances of Electronic Bands in the Si1-yCy Alloys Calculated with a Modified Becke-Johnson Exchange Potential

  • Mohamed RahmaniEmail author
  • Abdelkader Yakoubi
Original Paper


In the present research paper, the structural, electronic and thermodynamic properties of the Si1-yCy binary in a super cell consists of 08, 16 and 32 atoms were studied. The Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method was used within the Density Functional Theory (DFT); which was performed directly in WIEN2K code.. The exchange and correlation potential is treated with the local density approximation (LDA). The deviation of lattice parameter was analyzed by the use of Vegard’s Law depending on the concentration and, therefore, the results seem to obey the Vegard’s law. Moreover, the modified exchange potential proposed by Becke -Johnson to calculate the gap were applied. The results achieved by the local density approximation (LDA) and potential of modified Becke -Johnson (MBJ-LDA) was discussed. Difference in the gap was observed especially in low concentrations y = 0.125; the gap value increases from −0.016 eV to 0.177 eV and when y = 0.5 the gap improved from 1.302 eV to 2.272 eV obtained by the LDA and the MBJ respectively; close to the experimental value 2.39 eV. Next, in order to study the microscopic origin of the bowing gap, Zunger’s approach was introduced. Finally, thermodynamic properties were calculated as well as the results were discussed. Based on the results, it can be concluded that the values obtained are in a better agreement with those of other theoretical and experimental data.


Silicon carbide Density functional theory Local density approximation Modified Becke-Johnson Alloys Electronic properties Thermodynamic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the assistance of Dr. BENZERGA Noureddine ( from the University of Djillali Liabes faculty of letters and arts in reviewing the paper. The authors would like also to acknowledge the valuable proofreading of Me OUENNAS Sara in the presence of TRANS-OFFICE (E-mail: which have improved the quality of this paper.


  1. 1.
    Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687CrossRefGoogle Scholar
  2. 2.
    Camassel J, Contreras S (2012) Matériaux semiconducteurs à grand gap: le carbure de silicium (SiC). Techniques de l’ingénieur 1990:1–17Google Scholar
  3. 3.
    She X, Huang AQ, Lucía Ó, Ozpineci B (2017) Review of silicon carbide power devices and their applications. IEEE Trans Ind Electron 64:8193–8205CrossRefGoogle Scholar
  4. 4.
    Bhatnagar, M.; Baliga, B. J.(03/1993) Comparison of 6H-SiC, 3C-SiC, and Si for power devices.IEEE Transactions on Electron Devices, vol. 40, issue 3, pp. 645-655Google Scholar
  5. 5.
    Rohlfing M, Krüger P, Pollmann J (1993) Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Phys Rev B 48:17791CrossRefGoogle Scholar
  6. 6.
    Brunner K, Winter W, Eberl K, Jin-Phillipp N, Phillipp F (1997) Fabrication and band alignment of pseudomorphic Si 1− y C y, Si 1− x− y Ge x C y and coupled Si1− yCySi1− x− yGexCy quantum well structures on Si substrates. J Cryst Growth 175:451–458CrossRefGoogle Scholar
  7. 7.
    Theodorou G, Tsegas G, Kaxiras E (1999) Theory of electronic and optical properties of 3C-SiC. J Appl Phys 85:2179–2184CrossRefGoogle Scholar
  8. 8.
    Itoh T, Hasegawa Y, Fujiwara T, Masuda A, Nonomura S (2004) Preparation of wide gap and low resistive hetero-structured SiC X films as wide gap window of solar cells. J Non-Cryst Solids 338:123–126CrossRefGoogle Scholar
  9. 9.
    Schmidt M, Schoepke A, Korte L, Milch O, Fuhs W (2004) Density distribution of gap states in extremely thin a-Si: H layers on crystalline silicon wafers. J Non-Cryst Solids 338:211–214CrossRefGoogle Scholar
  10. 10.
    Yakoubi A, Bouhafs B, Ferhat M, Ruterana P (2005) Predictive study of electronic properties of silicon–carbon alloys. Mater Sci Eng B 122:145–151CrossRefGoogle Scholar
  11. 11.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRefGoogle Scholar
  12. 12.
    Ray AK, Huda M (2006) Silicon-carbide nano-clusters: a pathway to future nano-electronics. J Comput Theor Nanosci 3:315–341CrossRefGoogle Scholar
  13. 13.
    Mélinon P, Masenelli B, Tournus F, Perez A (2007) Playing with carbon and silicon at the nanoscale. Nat Mater 6:479–490CrossRefGoogle Scholar
  14. 14.
    Choyke WJ, Matsunami H, Pensl G (2013) Silicon carbide: recent major advances. Springer Science & Business MediaGoogle Scholar
  15. 15.
    Merzkirch M, Blümel C, Rössler R, Schell K, Bucharsky E, Weidenmann K (2014) Manufacturing and characterization of interpenetrating SiC lightweight composites. Procedia CIRP 18:102–107CrossRefGoogle Scholar
  16. 16.
    Román-Manso B, Vega-Díaz SM, Morelos-Gómez A, Terrones M, Miranzo P, Belmonte M (2014) Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity. Carbon 80:120–126CrossRefGoogle Scholar
  17. 17.
    Liu Y, Hu C, Feng W, Men J, Cheng L, Zhang L (2014) Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process. J Eur Ceram Soc 34:3489–3498CrossRefGoogle Scholar
  18. 18.
    Wu H, Li Y, Yan Y, Yin J, Liu X, Huang Z, Lee S-H, Jiang D (2014) Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramics. J Eur Ceram Soc 34:3469–3478CrossRefGoogle Scholar
  19. 19.
    Srivastava M, Rathee S, Siddiquee AN, Maheshwari S (2018) Investigation on the effects of silicon carbide and cooling medium during multi-pass FSP of Al-mg/SiC surface composites. Silicon:1–9Google Scholar
  20. 20.
    Zerfaoui H, Dib D, Kadem B (2018) The simulated effects of different light intensities on the SiC-based solar cells. Silicon:1–7Google Scholar
  21. 21.
    Haibo O, Jianfeng H, Xierong Z, Liyun C, Cuiyan L, Xinbo X, Jie F (2014) Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor–solid reaction of carbon spheres and silicon monoxide. Ceram Int 40:2619–2625CrossRefGoogle Scholar
  22. 22.
    Mollicone J, Ansart F, Lenormand P, Duployer B, Tenailleau C, Vicente J (2014) Characterization and functionalization by sol–gel route of SiC foams. J Eur Ceram Soc 34:3479–3487CrossRefGoogle Scholar
  23. 23.
    Brunner K, Eberl K, Winter W (1996) Near-band-edge photoluminescence from pseudomorphic Si 1− y C y/Si quantum well structures. Phys Rev Lett 76:303CrossRefGoogle Scholar
  24. 24.
    Harame D (2008) SiGe, Ge, and related compounds 3: materials, processing, and devicesGoogle Scholar
  25. 25.
    Demkov AA, Sankey OF (1993) Theoretical investigation of random Si-C alloys. Phys Rev B 48:2207CrossRefGoogle Scholar
  26. 26.
    Becke AD, Johnson ER (2006) A simple effective potential for exchange, ed: AIPGoogle Scholar
  27. 27.
    Tran F, Blaha P, Schwarz K (2007) Band gap calculations with Becke–Johnson exchange potential. J Phys Condens Matter 19:196208CrossRefGoogle Scholar
  28. 28.
    Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401CrossRefGoogle Scholar
  29. 29.
    Koller D, Tran F, Blaha P (2012) Improving the modified Becke-Johnson exchange potential. Phys Rev B 85:155109CrossRefGoogle Scholar
  30. 30.
    Friedel J (1955) LX. Deviations from Vegard's law. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 46:514–516CrossRefGoogle Scholar
  31. 31.
    L. Vegard, "Die konstitution der mischkristalle und die raumfüllung der atome," Zeitschrift für Physik A Hadrons and Nuclei, vol. 5, pp. 17-26, 1921. Google Scholar
  32. 32.
    Kasper E, Schuh A, Bauer G, Holländer B, Kibbel H (1995) Test of Vegard's law in thin epitaxial SiGe layers. J Cryst Growth 157:68–72CrossRefGoogle Scholar
  33. 33.
    Jacob K, Raj S, Rannesh L (2007) Vegard's law: a fundamental relation or an approximation? Int J Mater Res 98:776–779CrossRefGoogle Scholar
  34. 34.
    Singh DJ (1994) Introduction to the LAPW method. Planewaves, pseudopotentials and the LAPW method. Springer, pp 35–43Google Scholar
  35. 35.
    Blaha P, Schwarz K, Madsen G, Kvasnicka D, Luitz J (2001) wien2k. An augmented plane wave+ local orbitals program for calculating crystal propertiesGoogle Scholar
  36. 36.
    J. P. Perdew, "JP Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992), Accurate and simple analytic representation of the electron-gas correlation energyCrossRefGoogle Scholar
  37. 37.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  38. 38.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  39. 39.
    Broughton J, Bagus P (1989) 14 computer modelling of semiconductor interfaces. Chemistry of the semiconductor industry, p 306Google Scholar
  40. 40.
    Shur MS (1996) Handbook series on semiconductor parameters, vol 1. World ScientificGoogle Scholar
  41. 41.
    Adams GB, O’Keeffe M, Demkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49:8048–8053CrossRefGoogle Scholar
  42. 42.
    Koller D, Tran F, Blaha P (2011) Merits and limits of the modified Becke-Johnson exchange potential. Phys Rev B 83:195134CrossRefGoogle Scholar
  43. 43.
    Iyer S, Eberl K, Goorsky M, Tsang J, LeGoues F, Cardone F, Ek B (1992) Si1-y C y Alloys—extending Si-based Heterostructure engineering," in Amorphous and Crystalline Silicon Carbide IV, ed: Springer, pp. 13–22Google Scholar
  44. 44.
    Camargo-Martínez J, Baquero R (195106, 2012) Performance of the modified Becke-Johnson potential for semiconductors. Phys Rev B 86Google Scholar
  45. 45.
    Van Vechten J, Bergstresser T (1970) Electronic structures of semiconductor alloys. Phys Rev B 1:3351CrossRefGoogle Scholar
  46. 46.
    Jobst B, Hommel D, Lunz U, Gerhard T, Landwehr G (1996) E0 band-gap energy and lattice constant of ternary Zn1− xMgxSe as functions of composition. Appl Phys Lett 69:97–99CrossRefGoogle Scholar
  47. 47.
    Zollner S, Vartanian V, Liu J, Zaumseil P, Osten H, Demkov A, Nguyen B-Y (2006) Optical Properties, Elasto-Optical Effects, and Critical-point parameters of Biaxially stressed Si 1-y C y Alloys on Si. SiGe technology and device meeting, 2006. ISTDM 2006. Third international, pp 1–2Google Scholar
  48. 48.
    Bernard JE, Zunger A (1987) Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys Rev B 36:3199CrossRefGoogle Scholar
  49. 49.
    Ohfuti M, Sugiyama Y, Awano Y, Yokoyama N (2001) Electronic structure of Si 1− y C y and Si 1− x− y Ge x C y alloys with low C concentrations. Phys Rev B 63:195202CrossRefGoogle Scholar
  50. 50.
    Otero-de-la-Roza A, Luaña V (2011) Gibbs2: a new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput Phys Commun 182:1708–1720CrossRefGoogle Scholar
  51. 51.
    Blanco M, Francisco E, Luana V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158:57–72CrossRefGoogle Scholar
  52. 52.
    Flórez M, Recio J, Francisco E, Blanco M, Pendás AM (2002) First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides. Phys Rev B 66:144112CrossRefGoogle Scholar
  53. 53.
    Poirier J-P (2000) Introduction to the physics of the Earth's interior. Cambridge University PressGoogle Scholar
  54. 54.
    Francisco E, Blanco M, Sanjurjo G (2001) Atomistic simulation of Sr F 2 polymorphs. Phys Rev B 63:094107CrossRefGoogle Scholar
  55. 55.
    Blanco M Á (1997) Métodos cuánticos locales para la simulación de materiales iónicos: fundamentos, algoritmos y aplicacionesGoogle Scholar
  56. 56.
    Flubacher P, Leadbetter A, Morrison J (1959) The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra. Philos Mag 4:273–294CrossRefGoogle Scholar
  57. 57.
    Clark C (1964) CD Clark, PJ Dean, and PV Harris, Proc. Roy. Soc.(London) A277, 312 in Proc. Roy. Soc.(London), 1964, p. 312Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire d’Étude des Matériaux & Instrumentations Optiques, Physics DepartmentUniversity Djillali Liabes of Sidi Bel AbbesSidi Bel AbbesAlgeria

Personalised recommendations