Advertisement

Silicon

pp 1–11 | Cite as

A Holistic Approach on Junctionless Dual Material Double Gate (DMDG) MOSFET with High k Gate Stack for Low Power Digital Applications

  • S. DarwinEmail author
  • T. S. Arun Samuel
Original Paper
  • 9 Downloads

Abstract

The 2D analytical models for electrostatic potential, threshold voltage, subthreshold swing, Drain Induced Barrier Lowering (DIBL) and drain current of the Dual Material Double Gate junctionless transistor with high k gate structure is revealed. The electric field is obtained by solving Poisson equation with the help of parabolic approximation technique. The high k gate stack engineered (JL DMDG stack MOSFET) exaggerate the ION current of 10−4 (A/μm) and IOFF current of 10−14(A/μm) gives a remarkable amount of leakage current reduction. The short channel effects are quashed with the symmetric high k gate stack structure to a good extent. The device characteristics have been analyzed for various different high k materials. The significant outcomes of analytical solutions are mapped with the numerical solutions from Synopsys TCAD device simulator to affirm and validate the device structure. The JL DMDG Stack MOSFET based inverter circuit was also implemented to empower the device performance in digital applications. The voltage transfer characteristics, noise margin, delay and power dissipation of the JL DMDG stack MOSFET inverter circuit is assessed through numerical simulator with the help of Verilog-A language show substantial improvement due to this gate stack engineering model.

Keywords

Analytical model Channel potential High k dielectric Inverter noise margin Junctionless dual material double gate stack metal oxide semiconductor field effect transistor(JL DMDG Stack MOSFET) Poisson equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Mohsenifar S, Shahrokhabadi MH (2015) Gate stack high-κ materials for Si-based MOSFETs past, present, and futures. Microelectronics and Solid State Electronics 4(1):12–24Google Scholar
  2. 2.
    Datta S (2013) Recent advances in high performance CMOS transistors: from planar to non-planar. Electrochem Soc Interfac 22(1):41–46  https://doi.org/10.1149/2.F04131if
  3. 3.
    Colinge JP (2004) Multiple-gate SOI MOSFETs. Solid State Electron 48(6):897–905CrossRefGoogle Scholar
  4. 4.
    Doyle BS, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R (2003) High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 24(4):263–265  https://doi.org/10.1109/LED.2003.810888
  5. 5.
    Jiang C, Liang R, Wang J, Xu J (2015) A two-dimensional analytical model for short channel junctionless double-gate MOSFETs. AIP Adv 5(5):057122-1–057122-22Google Scholar
  6. 6.
    Venkateshwar Reddy G, Jagadesh Kumar M (2005) A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans Nanotechnol 4(2):260–268CrossRefGoogle Scholar
  7. 7.
    Tiwari PK, Dubey S, Singh K, Jit S (2012) Analytical modeling of subthreshold current and subthreshold swing of short-channel triple-material double-gate (TM-DG) MOSFETs. Superlattice Microst 51(5):715–724CrossRefGoogle Scholar
  8. 8.
    Jiménez D, Sáenz JJ, Iniguez B, Suñé J, Marsal LF, Pallares J (2004) Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett. 25(5):314–316  https://doi.org/10.1109/LED.2004.826526
  9. 9.
    Chiang T-K (2013) A novel quasi-3-D threshold voltage model for fully depleted quadruple - gate (FDQG) MOSFETs: with equivalent number of gates (ENG) included. IEEE Trans Nanotechnol 12(6):1022–1025CrossRefGoogle Scholar
  10. 10.
    Sallese J-M, Chevillon N, Lallement C, Iniguez B (2011) Charge-based modelling of junctionless double-gate field-effect transistor. IEEE Trans Electron Devices 58(8):2628–2637  https://doi.org/10.1109/TED.2018.2830972
  11. 11.
    Abhinav SR (2017) Reliability analysis of junction-less double gate (JLDG) MOSFET for analog/RF circuits for high linearity applications. Microelectron J 64:60–68CrossRefGoogle Scholar
  12. 12.
    Trivedi N, Kumar M, Subhasis H, Deswal SS, Gupta M, Gupta RS (2016) Analytical modeling of junctionless accumulation mode cylindrical surrounding gate MOSFET (JAM-CSG). Int J Numer Model Electron Networks Devices Fields 29(6):1036–1043  https://doi.org/10.1002/jnm.2162
  13. 13.
    Trevisoli R, Doria RT, Souza M, Pavanello MA (2014) Substrate bias influence on the operation of junctionless nanowire transistors. IEEE Trans Electron Devices 61(5):1575–1582  https://doi.org/10.1109/TED.2014.2309334
  14. 14.
    Su C-J, Tsai T-I, Liou Y-L, Lin Z-M, Lin H-C, Chao T-S (2011) Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channel. IEEE Electron Device Lett 32(4):521–523  https://doi.org/10.1109/LED.2011.2107498
  15. 15.
    Ghosh D, Parihar MS, Armstrong GA, Kranti A (2012) High - performance junctionless MOSFETs for ultralow-power analog/RF applications. IEEE Electron Device Lett 33(10):1477–1479  https://doi.org/10.1109/LED.2012.2210535
  16. 16.
    Pal A, Sarkar A (2014) Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Engineering Science and Technology an International Journal 17(4):205–212  https://doi.org/10.1016/j.jestch.2014.06.002
  17. 17.
    Wang P, Zhuang Y, Li C, Liu Y, Jiang Z (2015) Potential-based threshold voltage and subthreshold swing models for junctionless double-gate metal-oxide-semiconductor field-effect transistor with dual-material gate. Int J Numer Model Electron Networks Devices Fields 29(2):230–242  https://doi.org/10.1002/jnm.2067
  18. 18.
    Ghosh P, Haldar S, Gupta RS, Gupta M (2012) Analytical modeling and simulation for dual metal gate stack architecture (DMGSA) cylindrical /surrounded gate MOSFET. J Semicond Technol Sci 12(4):458–466  https://doi.org/10.5573/JSTS.2012.12.4.458
  19. 19.
    Adak S, Swain SK, Dutta A, Rahaman H, Sarkar CK (2016) Influence of channel length and high-K oxide thickness on subthreshold DC performance of graded channel and gate stack DG-MOSFETs. NANO: Brief Reports and Reviews 11(9):1650101-1–1650101-6  https://doi.org/10.1142/S1793292016501010
  20. 20.
    Intekhab Amin S, Sarin RK (2015) Charge-plasma based dual-material and gate stacked architecture of Junctionless transistor for enhanced analog performance. Superlattice Microst 88:582–590  https://doi.org/10.1016/j.spmi.2015.10.017
  21. 21.
    Intekhab Amin S, Sarin RK (2016) Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Applied Physics A Materials Science and Processing 122:380CrossRefGoogle Scholar
  22. 22.
    Chiang TK (2009) A new two dimensional subthreshold behavior model for the short-channel asymmetrical dual-material double-gate (ADMDG) MOSFETs. Microelectron Reliab 49:693–698CrossRefGoogle Scholar
  23. 23.
    Narendar V, Girdhardas KA (2018) Surface potential modeling of graded channel gate stack (GCGS) High-K Dielectric Dual-Material Double Gate (DMDG) MOSFET and analog/RF performance study. SILICON 10(6):2865–2875CrossRefGoogle Scholar
  24. 24.
    Narendar V, Rai S, Tiwari S (2016) A two dimensional (2D) analytical surface potential and subthreshold current model for underlap dual-material double-gate (DMDG) FinFET. J Comput Electron 1–10Google Scholar
  25. 25.
    Chen Q, Harrell EM, Meindl JD (2003) A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans Electron Devices 50(7):1631–1637  https://doi.org/10.1109/TED.2003.813906
  26. 26.
    Ding Z, Hu G, Gu J, Liu R, Wang L, Tang T (2011) An analytic model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate. MOSFETs Microchem J 42(3):515–519  https://doi.org/10.1016/j.mejo.2010.11.002
  27. 27.
    Endo K, Ishikawa Y, Liu Y, Masahara M, Matsukawa T, O’uchi S-I, Ishii K, Yamauchi H, Tsukada J, Suzuki E (2007) Experimental evaluation of effects of channel doping on characteristics of FinFETs. IEEE Electron Device Lett 28(12):1123–1125  https://doi.org/10.1109/LED.2007.909841
  28. 28.
    Fonstad CG (2006) Microelectronic devices and circuits. McGraw-Hill, New York, ch. 16, sec. 3, 572–577Google Scholar
  29. 29.
    Yang Z, Yu N, Liou JJ (2018) Impact of the gate structure on ESD characteristics of Tunnel Field Effect Transistors the 7th IEEE International Symposium on Next-Generation Electronics 1–4Google Scholar
  30. 30.
    Yang Z, Yang Y, Yu N, Liou JJ (2018) Improving ESD protection robustness using SiGe Source/Drain regions in tunnel FET. Micromachines 9(12):657  https://doi.org/10.3390/mi9120657
  31. 31.
    Wilk GD, Wallace RM, Anthony JM (2001) High-k gate dielectrics: current status and materials properties considerations. J Appl Phys 89(10):5243–5275CrossRefGoogle Scholar
  32. 32.
    Narendiran A, Akhila K, Bindu B (2015) A physics-based model of double-gate tunnel FET for circuit simulation. IETE J Res 62:387–393CrossRefGoogle Scholar
  33. 33.
    Akhila K, Bindu B (2014) Design of tunnel FET based low power digital circuits 18th International Symposium on VLSI Design and Test (VDAT) 1–2Google Scholar
  34. 34.
    Alvarado J, Iniguez B, Estrada M, Flandre D, Cerdeira A (2010) Implementation of the symmetric doped double-gate MOSFET model in Verilog-A for circuit simulation. Int J Nume Model Electron Netw Devices Fields 23:88–106  https://doi.org/10.1002/jnm.725
  35. 35.
    Kundert K, Zinke O (2004) The designer’s guide to VerilogAMS. Kluwer Academic Publishers, BostonGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ECEDr. Sivanthi Aditanar College of EngineeringTiruchendurIndia
  2. 2.Department of ECENational Engineering CollegeKovilpattiIndia

Personalised recommendations