pp 1–8 | Cite as

2,5-Dimercapto-1,3,4-Thiadiazole Tethered γ-Propylsilatrane: Syntheses, Characterization, UV-Vis and Electrochemical Studies

  • Gurjaspreet SinghEmail author
  • Shally Girdhar
  • Akshpreet Singh
  • Amandeep Saroa
  • Pinky Satija
  • Vikas Verma
  • Jasbhinder Singh
Original Paper


The present work aims at the synthesis of γ-propylsilatrane, possessing 2,5-dimercapto-1,3,4-thiadiazole (H2dmtd) moiety tethered to γ- position of propyl chain derived from γ-chloropropylsilatrane via nucleophilic substitution of chloro group with monoanionic Hdmtd. The linkage of 2,5-dimercapto-1,3,4-thiadiazole with γ-methylene carbon of propyl chain through N atom was confirmed from spectroscopic studies (1H and 13C NMR) elemental analyses, mass spectrometry and thermogravimetric analyses. UV-Vis spectroscopy, coupled with cyclic voltammetry was used to investigate the receptor action of the silatrane. The successful recognition ability of the synthesized molecule towards acetate, thioaceate and lead ions can be attributed to the presence of N-H and C=S system.


Cyclic voltammetry 2,5-dimercapto-1,3,4-thiadiazole γ-Propylsilatrane UV-vis spectroscopy Thermogravimetric analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank UGC, CSIR, DST-PURSE and DST-SERB for providing financial assistance for this study.

Supplementary material

12633_2019_126_MOESM1_ESM.docx (308 kb)
ESM 1 (DOCX 308 kb)


  1. 1.
    Puri JK, Singh R, Chahal VK (2011) Silatranes: a review on their synthesis, structure, reactivity and applications. Chem Soc Rev 40:1791–1840CrossRefGoogle Scholar
  2. 2.
    Singh G, Girdhar S, Singh A, Saroa A, Lakhi JS, Khullar S, Mandal SK (2018) Selective mercury ion recognition using a methyl red (MR) based silatrane sensor. New J Chem 42:6315–6321CrossRefGoogle Scholar
  3. 3.
    Singh G, Kaur G, Singh J (2018) Progressions in hyper–coordinate silicon complexes. Inorg Chem Commun 88:11–20CrossRefGoogle Scholar
  4. 4.
    Wen Y, Chen YY, Wen HL, Xie XL, Wang L (2012) Synthesis, crystal structure, and properties of the cadmium complex with 2,5-bis((benzoimidazol-2-yl)methylthio)-1,3,4-thiadiazole. J Coord Chem 65:2780–2792CrossRefGoogle Scholar
  5. 5.
    Benny PD, Fugate GA, Morley JE, Twamley B, Trabue S (2009) Synthesis and characterization of 2,5-bis(benzylthio)-1,3,4-thiadiazole complexes with fac-. Inorg Chim Acta 362:1289, 1294Google Scholar
  6. 6.
    El-Shekeil AG, Saleh AA, Al-Shuja OM (2009). J Macromol Sci Part A: Pure Appl Chem 46:121CrossRefGoogle Scholar
  7. 7.
    Hu Y, Li CY, Wang XM, Yang YH, Zhu HL (2014) 1,3,4-Thiadiazole: Synthesis, Reactions, and Applications in Medicinal, Agricultural, and Materials Chemistry. Chem Rev 114:5572–5610CrossRefGoogle Scholar
  8. 8.
    Sandoval-Rojasa AP, Suárez-Herrerab MF, Feliua JM (2016) Catalysis of poly(3,4-ethylenedioxythiophene)-Pt(hkl) electrodes towards 2,5-dimercapto-1,3,4-thiadiazole in 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. Electrochim Acta 218:54–57CrossRefGoogle Scholar
  9. 9.
    Davoglio RA, Biaggio SR, Bocchi N, Rocha-Filho RC (2013) Flexible and high surface area composites of carbon fiber, polypyrrole, and poly(DMcT) for supercapacitor electrodes. Electrochim Acta 93:93–100CrossRefGoogle Scholar
  10. 10.
    Davoglio RA, Biaggio SR, Rocha-Filho RC, Bocchi N (2010) Bilayered nanofilm of polypyrrole and poly(DMcT) for high-performance battery cathodes. J Power Sources 195:2924–2927CrossRefGoogle Scholar
  11. 11.
    Qin TT, Li J, Luo HQ, Li M, Li NB (2011) Corrosion inhibition of copper by 2,5-dimercapto-1,3,4-thiadiazole monolayer in acidic solution. Corros Sci 53:1072–1078CrossRefGoogle Scholar
  12. 12.
    Chen W, Luo HQ, Li NB (2011) Inhibition effects of 2,5-dimercapto-1,3,4-thiadiazole on the corrosion of mild steel in sulphuric acid solution. Corros Sci 53:3356–3365CrossRefGoogle Scholar
  13. 13.
    Vasimalai N, John SA (2011) Spectrofluorimetric determination of picogram level Pb(II) using a dimercaptothiadiazole fluorophore. Spectrochim Acta, Part A 82:153–158CrossRefGoogle Scholar
  14. 14.
    Ahmed MJ, Mamun MA (2001) Spectrophotometric determination of lead in industrial, environmental, biological and soil samples using 2,5-dimercapto-1,3,4-thiadiazole. Talanta 55:43–54CrossRefGoogle Scholar
  15. 15.
    Ben-Bassat AHI, Alony T (1976) Determination of submicrogram amounts of lead in water and urine with 2,5-dimercapto-1,3,4-thiadiazole. Anal Chim Acta 83:403–408CrossRefGoogle Scholar
  16. 16.
    Vasimalai N, Sheeba G, John SA (2012) Ultrasensitive fluorescence-quenched chemosensor for Hg(II) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles. J Hazard Mater 213-214:193–199CrossRefGoogle Scholar
  17. 17.
    Vasimalai N, John SA (2011) Ultrasensitive and selective spectrofluorimetric determination of Hg(II) using a dimercaptothiadiazole fluorophore. J Lumin 131:2636–2641CrossRefGoogle Scholar
  18. 18.
    Gibson BD, Ptacek CJ, Lindsay MBJ, Blowes BW (2011) Examining Mechanisms of Groundwater Hg(II) Treatment by Reactive Materials: An EXAFS Study. Environ Sci Technol 45:10415–10421CrossRefGoogle Scholar
  19. 19.
    Fu Y, Li P, Bu L, Wang T, Xie Q, Chen J, Yao S (2011) Exploiting Metal-Organic Coordination Polymers as Highly Efficient Immobilization Matrixes of Enzymes for Sensitive Electrochemical Biosensing. Anal Chem 83:6511–6517CrossRefGoogle Scholar
  20. 20.
    Fu Y, Zou C, Xie Q, Xu X, Chen C, Deng W, Yao S (2009) Highly Sensitive Glucose Biosensor Based on One-Pot Biochemical Preoxidation and Electropolymerization of 2,5-Dimercapto-1,3,4-thiadiazole in Glucose Oxidase-Containing Aqueous Suspension. J Phys Chem B 113:1332–1340CrossRefGoogle Scholar
  21. 21.
    Kalimuthu P, Suresh D, John SA (2006) Uric acid determination in the presence of ascorbic acid using self-assembled submonolayer of dimercaptothiadiazole-modified gold electrodes. Anal Biochem 357:188–193CrossRefGoogle Scholar
  22. 22.
    Micetich RG, Maiti SN, Singh MP, Tanaka M, Yamazaki T, Ogawa K (1985) The trapping of sulfenic acids from penicillin sulfoxides - use of 2,5-dimercapto-1,3,4-thiadiazole and 2,4-dimercaptopyrimidine as trapping agents. Tetrahedron Lett 26:5611–5614CrossRefGoogle Scholar
  23. 23.
    Singh G, Singh A, Singh J, Aulakh D, Wriedt M, Espinosa C, Esteban MA, Sehgal R, Goyal K, Sinha S (2017) First synthesis of pyrene-functionalized silatranes for mechanistic insights into their potential anti-parasitic and anti-oxidation activities. New J Chem 41:15165–15172CrossRefGoogle Scholar
  24. 24.
    Rossom WV, Asby DJ, Tavassoli A, Gale PA (2016) Perenosins: a new class of anion transporter with anti-cancer activity. Org Biomol Chem 14:2645–2650CrossRefGoogle Scholar
  25. 25.
    Share AI, Patel K, Nativi C, Cho EJ, Francesconi O, Busschaert N, Gale PA, Roelens S, Sessler JL (2016) Chloride anion transporters inhibit growth of methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Chem Commun 52:7560–7563CrossRefGoogle Scholar
  26. 26.
    Howe ENW, Busschaert N, Wu X, Berry SN, Ho J, Light ME, Czech DD, Klein HA, Kitchen JA, Gale PA (2016) pH-Regulated Nonelectrogenic Anion Transport by Phenylthiosemicarbazones. J Am Chem Soc 138:8301–8308CrossRefGoogle Scholar
  27. 27.
    Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. Crit Rev Anal Chem 41:282–313CrossRefGoogle Scholar
  28. 28.
    Gupta VK, Maleh HK, Sadegh R (2015). Int J Electrochem Sci 10:303Google Scholar
  29. 29.
    Gupta VK, Singh AK, Kumawat LK (2014) Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors Actuators B Chem 195:98–108CrossRefGoogle Scholar
  30. 30.
    Srivastava SK, Gupta VK, Jain S (1996) PVC-Based 2,2,2-Cryptand Sensor for Zinc Ions. Anal Chem 68:1272–1275CrossRefGoogle Scholar
  31. 31.
    Ghasemi M, Javadian H, Ghaemi N, Agarwal S, Gupta VK (2016) Microporous nanocrystalline NaA zeolite prepared by microwave assisted hydrothermal method and determination of kinetic, isotherm and thermodynamic parameters of the batch sorption of Ni (II). J Mol Liq 215:161–169CrossRefGoogle Scholar
  32. 32.
    Asfaram A, Mehrorang G, Agarwal S, Tyagi I, Gupta VK (2015) Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv 5:18438–18450CrossRefGoogle Scholar
  33. 33.
    Maleh HK, Javazmi FT, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A Novel DNA Biosensor Based on a Pencil Graphite Electrode Modified with Polypyrrole/Functionalized Multiwalled Carbon Nanotubes for Determination of 6-Mercaptopurine Anticancer Drug. Ind Eng Chem Res 54:3634–3639CrossRefGoogle Scholar
  34. 34.
    Voronkov MG, Dyakov VL, Kirpichenko SV (1982) Silatranes. J Organomet Chem 233:1–147CrossRefGoogle Scholar
  35. 35.
    Maiti N, Chadha R, Das A, Kapoor S (2016) Surface selective binding of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) on silver and gold nanoparticles: a Raman and DFT study. RSC Adv 6:62529–62539CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Centre of Advanced Studies in ChemistryPanjab UniversityChandigarhIndia
  2. 2.Guru Jhambeshwar University of Science and TechnologyHisarIndia
  3. 3.Department of ChemistryLovely Professional UniversityPhagwaraIndia

Personalised recommendations