Advertisement

Silicon

, Volume 12, Issue 1, pp 139–146 | Cite as

Effect of Industrial Waste on Chemical and Water Absorption of Bamboo Fiber Reinforced Composites

  • Anu GuptaEmail author
Original Paper
  • 22 Downloads

Abstract

Cement by-pass dust (CBPD) is a by-product of cement manufacturing plants, whereas the cenosphere flyash is generated by the coal based power plants. Cenosphere flyash and CBPD were used as particulate fillers to manufacture the bidirectional bamboo fiber reinforced polymer composites. In the present work two different sets of composites were fabricated using normal bidirectional bamboo fibers for one set and the alkali treated bidirectional bamboo fibers for the other set. For each set, filler materials were introduced with varying composition to fabricate the different samples. The fabricated samples are proposed to have a large number of industrial and civil engineering applications. In order to check their long term suitability, chemical resistance and water absorption properties were studied and a comparative analysis has been carried out between the different levels of fillers for both sets of composites. Composite samples with fillers were found to have good chemical resistance toward acids, solvents, and alkalis. These composites have also shown better water resistance over the corresponding neat composites (without fillers).

Keywords

Polymer Composites Industrial Waste Chemical Properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Author is thankful to Science and Engineering Research Board, Department of Science and Technology (Govt of India) for supporting this research under the Fast Track Proposal Young Scientists scheme. Author is the thankful to the reviewers of the manuscript for many helpful suggestions to improve the manuscript.

References

  1. 1.
    S. Biswas, A. Mittal and G. Srikanth, tifac.org
  2. 2.
    R.N. Turukmane, A.M. Daberao, P.P. Kolte and V.G. Nadiger (2016). A Review–Nano Technology in Textile composites. J Text. Engg. Process 2(3):19–22Google Scholar
  3. 3.
    Ruuska A, Häkkinen T (2014) Material efficiency of building construction. Building 4:266–294CrossRefGoogle Scholar
  4. 4.
    Ettu EO (2014). Int. J. Engg Develop. Res. 3(1)Google Scholar
  5. 5.
    Mahajan GV, Prof. V. S. Aher (2012). Int. J. Sci. Res Publications 2(11)Google Scholar
  6. 6.
    Wambua P, Ivens J, Verpoest I (2003). Comp. Sci. Technol. 1259:63Google Scholar
  7. 7.
    Pardo SG, Bernal C, Ares A, Abad MJ, Cano J (2010). Poly. Compos.31(10):1722Google Scholar
  8. 8.
    Devi MS (1998) Utilization of flyash as filler for unsaturated polyester resin. J Appl PolymSci 69(7):1385–1391CrossRefGoogle Scholar
  9. 9.
    Singla M, Chawla V, Min J (2010). Mater. Charac. Engg. 9(3):199Google Scholar
  10. 10.
    Safiuddin M, Jumaat MZ, Salam MA, Islam MS, Hashim R (2010). J Phys Sci 5(13):1952Google Scholar
  11. 11.
    Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28:319–334CrossRefGoogle Scholar
  12. 12.
    Rao RMVGK, Balasubramanian N, Chand M (1981). J Appl Polym Sci 4069:26Google Scholar
  13. 13.
    Aydın M, Tozlu H, Kemaloglu S, Aytac A, Ozkoc G (2011) Effects of alkali treatment on the properties of short flax fiber–poly(lactic acid) eco-composites. J Polym Environ 19(11):11–17CrossRefGoogle Scholar
  14. 14.
    Gupta A, Kumar A, Patnaik A, Biswas SR (2012). J Surf Engg Mat Adv Tech 2:149Google Scholar
  15. 15.
    Baskaran R, Vinayagamoorthi S, Murugesan A, Gandhi S (2017). Int. J. Adv. Poly. Sci. Technol 7(1):1Google Scholar
  16. 16.
    Pappu A, Saxena M, Asolekar SR (2007). Build. Environ. 42(6):2311CrossRefGoogle Scholar
  17. 17.
    Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mechanical and thermal characteristics of high density polyethylene–fly ash Cenospheres composites. Mater Des 31(4):2051–2060CrossRefGoogle Scholar
  18. 18.
    Atikler U, Basalp D, Tihminlioğlu F, Appl J (2006). Polym. Sci 102(55):4460Google Scholar
  19. 19.
    Srivastava VK, Shembekar PS (1990). J Mater Sci 3513:25Google Scholar
  20. 20.
    Ahmaruzzaman M (2010). Prog. Energy Combust Sci 36(3):327CrossRefGoogle Scholar
  21. 21.
    Sharma J, Navin Chand MN (2012) Bapat. Results Physics 2(26)Google Scholar
  22. 22.
    Thakur S, Chauhan SR (2013). Indian J Eng Mater Sci 20:539–548Google Scholar
  23. 23.
    Al-Aghbari M, Dutta RK (2009). Int. J. Geo. Enviro. 1(1):19Google Scholar
  24. 24.
    Gupta A, Kumar A (2012). Asian J. Chem. 24(4):1831Google Scholar
  25. 25.
    Sen T, Jagannatha Reddy HN (2011). Int Innov Technol 2(3):186Google Scholar
  26. 26.
    Reddy EVS, Rajulu AV, Reddy KH, Reddy GR, Reinforc J (2010). Plast. Compos. 29(14):2119CrossRefGoogle Scholar
  27. 27.
    Rajulu AV, Devi LG, Rao GB, Reddy RL, Reinforc J (2003). Plast. Compos. 22(11):1029CrossRefGoogle Scholar
  28. 28.
    Rajulu AV, Rao GB, Reddy RL (2001). J. Reinforc. Plast. Compos 20(4):335CrossRefGoogle Scholar
  29. 29.
    Gupta A (2015). J. Polym. Compos.37(1):141Google Scholar
  30. 30.
    Yang GC, Zeng HM, Jian NB, Wb Z (1996). Acta Sci Nat Uni Sunyatseni 35:53Google Scholar
  31. 31.
    Thwea MM, Liao K (2002). Compos. A: AppL.Sci. Manufact. 33:43CrossRefGoogle Scholar
  32. 32.
    Thomasan JL (1995) The interface region in glass fibre-reinforced epoxy resin composites: 2. Water absorption, voids and the interface. Composites 26:477–485CrossRefGoogle Scholar
  33. 33.
    Ochi S (2014). Mater. Sci. Appl 1011:5Google Scholar
  34. 34.
    John K, Naidu SV (2007). J. Reinforc. Plast. Compos. 373:26Google Scholar
  35. 35.
    Venkata Reddy G, Noorunnisa Khanam P, Shobha Rani T (2007). Chemical resistance studies of kapok/glass and kapok/sisal fabrics reinforced unsaturated polyester hybrid composites. Bull. Pure App. Sci. Section C, Chem 26(1)Google Scholar
  36. 36.
    Raghu K, Noorunnisa Khanam P, Naidu S V (2010). J. Reinf. Plast. Compos. 343:29Google Scholar
  37. 37.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  38. 38.
    Adekunle KF (2015). J Polym Chem 5:41Google Scholar
  39. 39.
    J. Zhu, H. Zhu, H. Abhyankar, J. Njuguna, Materials,6(11), 5171(2013)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental Science and EnggGuru Jambheswar University of Science and TechnologyHisarIndia

Personalised recommendations