, Volume 11, Issue 4, pp 1801–1807 | Cite as

EPR Spectroscopic Studies of Neutron-Irradiated Nanocrystalline Silicon Carbide (3C-SiC)

  • Elchin HuseynovEmail author
  • Anze Jazbec
Original Paper


Nanocrystalline silicon carbide (3C-SiC) has been irradiated by neutrons (2× 1013n ⋅ cm−2s−1) up to 20 hours. Paramagnetic centers and their nature have been investigated comparatively before and after neutron irradiation. The Electron Paramagnetic Resonance (EPR) measurements were performed over the broad range of magnetic field from 0.05 to 0.55 T (500 to 5500 Gauss) in order to detect different paramagnetic centers. Simultaneously, EPR spectroscopy performed over the range from 0.3270T to 0.3370T which is most paramagnetic centers appears including free radicals. Neutron irradiation effects on the concentration of \(V_{Si}^{-}\) and \(V_{C}^{+}\) vacancies has been investigated. The number of paramagnetic centers for different values of g-factor has been calculated appropriate to local cases existed around 3300G. After neutron irradiation creation mechanism of paramagnetic centers in the nanocrystalline silicon carbide has investigated.


Nanocrystalline 3C-SiC Neutron irradiation EPR studies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan – Grant EİF/GAM-4-BGM-GİN-2017-3(29)-19/01/1. I gratefully acknowledge the assistance of my colleagues from Institute of Radiation Problems of Azerbaijan National Academy of Sciences, National Nuclear Research Center and “Reactor Infrastructure Centre (RIC)” and “Condensed Matter Department” at Institute Jožef Stefan (IJS), Slovenia. I would like to thank Prof. Dr. Borut Smodiš and Dr. Luka Snoj for providing irradiated samples in TRIGA Mark II type research reactor and Prof. Dr. Janez Štrancar for encouraging discussions.


  1. 1.
    Angelici Avincola V, Grosse M, Stegmaier U, Steinbrueck M, Seifert HJ (2015) Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application. Nuclear Eng Des 295:468–478CrossRefGoogle Scholar
  2. 2.
    Xiang K, Wang X, Chen M, Shen Y, Shu H, Yang X (2017) Industrial waste silica preparation of silicon carbide composites and their applications in lithium-ion battery anode. J Alloys Compd 695:100–105CrossRefGoogle Scholar
  3. 3.
    Singh N, Singh K, Pandey A, Kaur D (2016) Improved electrical transport properties in high quality nanocrystalline silicon carbide (nc-SiC) thin films for microelectronic applications. Mater Lett 164:28–31CrossRefGoogle Scholar
  4. 4.
    Rhim SH, Qi Y, Sun GF, Liu Y, Weinert M, Li L (2011) Role of functionalized transition-metal coated W tips in STM imaging: Application to epitaxial graphene on SiC(0001). Phys Rev B 84:125425CrossRefGoogle Scholar
  5. 5.
    Kampitsis G, Papathanassiou S, Manias S (2015) Comparative evaluation of the short-circuit withstand capability of 1.2 kV silicon carbide (SiC) power transistors in real life applications. Microelectron Reliab 55, 12, B:2640–2646CrossRefGoogle Scholar
  6. 6.
    Anzalone R, Privitera S, Camarda M, Alberti A, Mannino G, Fiorenza P, Di Franco S, La Via F (2015) Interface state density evaluation of high quality hetero-epitaxial 3C–SiC(0 0 1) for high-power MOSFET applications. Mater Sci Eng: B 198:14–19CrossRefGoogle Scholar
  7. 7.
    Aguado F, Baonza VG (2006) Prediction of bulk modulus at high temperatures from longitudinal phonon frequencies: Application to diamond, c - BN, and 3C-SiC. Phys Rev B 73:024111CrossRefGoogle Scholar
  8. 8.
    Chung G-S, Yoon K-H (2008) Ohmic contacts to single-crystalline 3C-SiC films for extreme-environment MEMS applications. Microelectron J 39(12):1408–1412CrossRefGoogle Scholar
  9. 9.
    Chung G-S, Ahn J-H (2008) Characterization of polycrystalline 3C–SiC thin film diodes for extreme environment applications. Microelectron Eng 85(8):1772–1775CrossRefGoogle Scholar
  10. 10.
    Chunga G-S, Maboudian R (2005) Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications. Sens Actuators A: Phys 119(2):599–604CrossRefGoogle Scholar
  11. 11.
    Swaminathan N, Paul J, Morgan KD, Szlufarska I (2010) Effects of grain size and grain boundaries on defect production in nanocrystalline 3C–SiC. Acta Mater 58(8):2843–2853CrossRefGoogle Scholar
  12. 12.
    Pawbake A, Mayabadi A, Waykar R, Kulkarni R, Jadhavar A, Waman V, Parmar J, Bhattacharyya S, Ma Y-R, Devan R, Pathan H, Jadkar S (2016) Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot wire-CVD. Mater Res Bull 76:205–215CrossRefGoogle Scholar
  13. 13.
    Kim K-S, Chung G-S (2009) Growth and characteristics of polycrystalline 3C–SiC films for extreme environment micro/nano-electromechanical systems. Sens Actuators A: Phys 155:125–130CrossRefGoogle Scholar
  14. 14.
    Intarasiri S, Dangtip S, Hallén A, Jensen J, Yub LD, Possnert G, Singkarat S (2007) Activation energy of the growth of ion-beam-synthesized nano-crystalline 3C–SiC. Nuclear Instr Methods Phys Res Sect B: Beam Interactions Mater Atoms 257(1–2):195–198CrossRefGoogle Scholar
  15. 15.
    van Rooyena IJ, Engelbrecht JAA, Henry A, Janzén E, Neethling JH, van Rooyen PM (2012) The effect of grain size and phosphorous-doping of polycrystalline 3C–SiC on infrared reflectance spectra. J Nuclear Mater 422(1–3):103–108CrossRefGoogle Scholar
  16. 16.
    Liu C, He L, Zhai Y, Tyburska-Püschel B, Voyles PM, Sridharan K, Morgan D, Szlufarska BI (2017) Evolution of small defect clusters in ion-irradiated 3C-SiC: Combined cluster dynamics modeling and experimental study. Acta Mater 125:377–389CrossRefGoogle Scholar
  17. 17.
    Persson C, Lindefelt U, Sernelius BE (1999) Doping-induced effects on the band structure in n-type 3C-, 2H-, 4H-, 6H-SiC and Si. Phys Rev B 60:16479CrossRefGoogle Scholar
  18. 18.
    Charpentier S, Kassiba A, Fusil S, Armand X, Cauehetier M, Fayet JC, Emery J (1997) EPR Investigations of SiC and siOC Nanometric Powders. Appl Magn Reson 12:255–267CrossRefGoogle Scholar
  19. 19.
    Isoya J, Ohshima T, Ohi A, Morishita N, Itoh H (2003) ESR characterization of activation of implanted phosphorus ions in silicon carbide. Nuclear Instrum Methods Phys Res B 206:965–968CrossRefGoogle Scholar
  20. 20.
    Baranov PG, Ber BYA, Godisov ON, Il’in IV, Ionov AN, Mokhov EN, Muzafarova MV, Kaliteevski AK, Kaliteevski MA, Kop’ev PS (2005) Probing of the shallow donor and acceptor wave functions in silicon carbide and silicon through an EPR study of crystals with a modified isotopic composition. Phys Solid State 47(12):2219–2232CrossRefGoogle Scholar
  21. 21.
    Bagraev NT, Gets DS, Kalabukhova EN, Klyachkin LE, Malyarenko AM, Mashkov VA, Savchenko DV, Shanina BD (2014) Electrically detected electron paramagnetic resonance of point centers in 6HSiC nanostructures. Semiconductors 48(11):1467–1480CrossRefGoogle Scholar
  22. 22.
    Soltamov VA, Tolmachev DO, Il’in IV, Astakhov GV, Dyakonov VV, Soltamova AA, Baranov PG (2015) Point defects in silicon carbide as a promising basis for spectroscopy of single defects with controllable quantum states at room temperature. Phys Solid State 57(5):891–899CrossRefGoogle Scholar
  23. 23.
    Isoya J, Umeda T, Mizuochi N, Son NT, Janzén E, Ohshima T (2008) EPR identification of intrinsic defects in SiC. Phys Stat Sol (b) 245(7):1298–1314CrossRefGoogle Scholar
  24. 24.
    Charpentier S, Kassiba A, Emery J, Cauchetier M (1999) Investigation of the paramagnetic centres and electronic properties of silicon carbide nanomaterials. J Phys Condens Matter 11:4887–4897CrossRefGoogle Scholar
  25. 25.
    Baranov PG, Ilyin IV, Mokhov EN (2002) EPR study of shallow and deep phosphorous centers in 6H-SiC. Phys Rev B 66:165206CrossRefGoogle Scholar
  26. 26.
    Orlinski SB, Schmidt J (2003) Silicon and carbon vacancies in neutron-irradiated SiC: A high-field electron paramagnetic resonance study. Phys Rev B 67:125207CrossRefGoogle Scholar
  27. 27.
    Cantin JL, von Bardeleben HJ, Shishkin Y, Ke Y, Devaty RP, Choyke WJ (2004) Identification of the carbon Dangling bond center at the 4H-SiC=SiO2 interface by an EPR study in oxidized porous SiC. Phys Rev Lett 92:015502CrossRefPubMedGoogle Scholar
  28. 28.
    Savchenko DV, Kalabukhova EN, Poppl A, Mokhov EN, Shanina BD (2011) EPR study of conduction electrons in heavily doped n-type 4H SiC. Phys Status Solidi B 248(12):2950– 2956CrossRefGoogle Scholar
  29. 29.
    Eaton GR, Eaton SS, Barr DP, Weber RT (2010) Quantitative EPR. Springer Wien, New York. ISBN 978-3-211-92947-6 e-ISBN 978-3-211-92948-3CrossRefGoogle Scholar
  30. 30.
    Huseynov E, Garibov A, Mehdiyeva R, Huseynova E (2016) Effects of neutron flux on the nano silica particles: ESR study. Mod Phys Lett B 30(N8):1650115CrossRefGoogle Scholar
  31. 31.
    Huseynov E (2016) Neutron irradiation and frequency effects on the electrical conductivity of nanocrystalline silicon carbide (3C-SiC). Phys Lett A 380/38:3086–3091CrossRefGoogle Scholar
  32. 32.
    Huseynov EM (2017) Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods. Physica B: Condens Matter 510:99–103CrossRefGoogle Scholar
  33. 33.
    Huseynov E (2018) Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC). Appl Phys A 124:19CrossRefGoogle Scholar
  34. 34.
    Huseynov EM (2018) Neutron irradiation, amorphous transformation and agglomeration effects on the permittivity of nanocrystalline silicon carbide (3C-SiC). NANO 13/3:1830002CrossRefGoogle Scholar
  35. 35.
    Huseynov E, Jazbec A (2017) Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method. Physica B: Condens Matter 517:30–34CrossRefGoogle Scholar
  36. 36.
    Huseynov EM (2017) Permittivity-frequency dependencies study of neutron-irradiated nanocrystalline silicon carbide (3C-SiC), vol 12/6Google Scholar
  37. 37.
    Snoj L, Zerovnik G, Trkov A (2012) Computational analysis of irradiation facilities at the JSI TRIGA reactor. Appl Radiat Isot 70:483–488CrossRefPubMedGoogle Scholar
  38. 38.
    Zerovnik G, Podvratnik M, Snoj L (2014) On normalization of fluxes and reaction rates in MCNP criticality calculations. Ann Nucl Energy 63:126–128CrossRefGoogle Scholar
  39. 39.
    Zerovnik G et al (2015) Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers. Appl Radiat Isot 96:27–35CrossRefPubMedGoogle Scholar
  40. 40.
    Henry R, Tiselj I, Snoj L (2015) Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP. Appl Radiat Isot 97:140–148CrossRefPubMedGoogle Scholar
  41. 41.
    Snoj L, Kavcic A, Zerovnik G, Ravnik M (2010) Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo. Ann Nucl Energy 37(2):223–229CrossRefGoogle Scholar
  42. 42.
    Filliatre P et al (2015) Experimental assessment of the kinetic parameters of the JSI TRIGA reactor. Ann Nucl Energy 83:236–245CrossRefGoogle Scholar
  43. 43.
    žerovnik G et al (2014) Measurements of thermal power at the TRIGA Mark II reactor in Ljubljana using multiple detectors. IEEE Trans Nuclear Sci 61(5):2527–2531. Article number 2356014CrossRefGoogle Scholar
  44. 44.
    Kolšek A, Radulović V, Trkov A, Snoj L (2015) Using TRIGA Mark II research reactor for irradiation with thermal neutrons. Nucl Eng Des 283:155–161CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Radiation Problems of Azerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Reactor Infrastructure CentreJozef Stefan InstituteLjubljanaSlovenia
  3. 3.Department of Nanotechnology and Radiation Material ScienceNational Nuclear Research CenterBakuAzerbaijan

Personalised recommendations