, Volume 11, Issue 2, pp 879–889 | Cite as

A Novel SOI MESFET to Improve the Equipotential Contour Distributions by Using an Oxide Barrier

  • Mohaddeseh Mohtaram
  • Ali A. OroujiEmail author
  • Zeinab Ramezani
Original Paper


A new Metal Semiconductor Field Effect Transistor (MESFET) structure in Silicon on Insulator (SOI) technology will be introduced in this paper. In our idea, an oxide barrier is used on the drain side of the gate to improve DC and AC characteristics of MESFETs. We call the proposed structure as modified equipotential contour MESFET (MEC-MESFET). Our main reason to present this proposed structure is to modify the equipotential contour distributions by using the oxide barrier. In addition, the oxide barrier has a greater energy band gap rather than a silicon (Si) semiconductor. So, in comparison with Si, it will break at higher voltages. The maximum electric field occurs on the gate edge near the drain side in a conventional MESFET (C-MESFET). Therefore, in the proposed structure, by placing an additional oxide barrier in the drain side of the gate and modifying the maximum electrical field in this part, the breakdown voltage increases. The drain saturation and breakdown voltage of the proposed structure improve 21 and 29 percent, respectively, which increases the maximum output power density to 56 percent in comparison with conventional silicon on insulator MESFET (C-MESFET). Moreover, the gate capacitance decreases by using the oxide barrier and consequently improves the frequency characteristics like Unilateral power gain (U), Maximum Available Gain (MAG), current gain (h21), and noise in comparison with the C-MESFET.


Metal semiconductor field effect transistor (MESFET) Silicon on insulator (SOI) Maximum output power density Electrical field Breakdown voltage Frequency characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hjelmgren H, Allerstam F, Andersson K, Nilsson PÅ, Rorsman N (2010) Transient simulation of microwave SiC MESFETs with improved trap models. IEEE Trans Electron Devices 57(3):729–732CrossRefGoogle Scholar
  2. 2.
    Sriram S, Hagleitner H, Namishia D, Alcorn T, Smith T, Pulz B (2009) High-gain SiC MESFETs using source-connected field plates. IEEE Electron Device Lett 30(9):952–953CrossRefGoogle Scholar
  3. 3.
    Deng X, Zhang B, Li Z, Chen Z (2008) Two-dimensional analysis of the surface state effects in 4H-SiC MESFETs. Microelectron Eng 85(2):295–299CrossRefGoogle Scholar
  4. 4.
    Zhu C, Zhao P (2007) Dual-channel 4H-SiC metal semiconductor field effect transistors. Solid State Electron 51(3):343–346CrossRefGoogle Scholar
  5. 5.
    Ramezani Z, Orouji AA, Agharezaei H (2016) A novel symmetrical 4H–SiC MESFET: an effective way to improve the breakdown voltage. J Comput Electron 15(1):163–171CrossRefGoogle Scholar
  6. 6.
    Rusli CL, Zhao P, Xia JH (2006) Characterization of SiC MESFETs with narrow channel layer. Microelectron Eng 83(1):72–74. SPEC. ISS.CrossRefGoogle Scholar
  7. 7.
    Zhang J, Ye Y, Zhou C, Luo X, Zhang B, Li Z (2008) High breakdown voltage 4H-SiC MESFETs with floating metal strips. Microelectron Eng 85(1):89–92CrossRefGoogle Scholar
  8. 8.
    Ramezani Z, Orouji AA, Rahimian M (2015) High-performance SOI MESFET with modified depletion region using a triple recessed gate for RF applications. Mater Sci Semicond Process 30:75–84CrossRefGoogle Scholar
  9. 9.
    Orouji AA, Ramezani Z, Sheikholeslami SM (2015) A novel SOI-MESFET structure with double protruded region for RF and high voltage applications. Mater Sci Semicond Process 30:545– 553CrossRefGoogle Scholar
  10. 10.
    Ramezani Z, Orouji AA, Aminbeidokhti A (2015) A novel symmetric GaN MESFET by dual extra layers of Si3N4. Phys E Low-Dimensional Syst Nanostructures 70:135–140CrossRefGoogle Scholar
  11. 11.
    Esseni D, Mastrapasqua M, Celler GK, Fiegna C, Selmi L, Sangiorgi E (2001) Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application. IEEE Trans Electron Devices 48(12):2842–2850CrossRefGoogle Scholar
  12. 12.
    Stallinga P (2009) Electrical characterization of organic electronic materials and devicesGoogle Scholar
  13. 13.
    Vandersand J, Kushner V, Yang J, Blalock B, Thornton T (2005) CMOS compatible SOI MESFETs for extreme environment applications. IEEE Aerosp Conf Proc, 2005Google Scholar
  14. 14.
    Software DS (2016) Device simulator Atlas: Atlas user’s manual. Silvaco, IncGoogle Scholar
  15. 15.
    Tao L, Chen Z, Li X, Yan K (2017) Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. npj 2D Mater Appl 1(1):19CrossRefGoogle Scholar
  16. 16.
    Song Y, et al (2015) Role of interfacial oxide in high-efficiency graphene-silicon schottky barrier solar cells. Nano Lett 15(3):2104–2110CrossRefGoogle Scholar
  17. 17.
    Li X, et al (2016) High detectivity graphene-silicon heterojunction photodetector. Small 12(5):595–601CrossRefGoogle Scholar
  18. 18.
    Orouji AA, Ramezani Z, Heydari AA (2014) A novel high-performance SOI MESFET by stopping the depletion region extension. Superlattices Microstruct 75:195–207CrossRefGoogle Scholar
  19. 19.
    Ervin J, Balijepalli A, Joshi P, Kushner V, Yang J, Thornton TJ (2006) CMOS-compatible SOI MESFETs with high breakdown voltage. IEEE Trans Electron Devices 53(12):3129–3134CrossRefGoogle Scholar
  20. 20.
    Sze SM (2002) Semiconductor devices, physics and technology. Wiley, HobokenGoogle Scholar
  21. 21.
    Singh J (2000) Semiconductor devices?: basic principles. Wiley India Pvt Limited, HobokenGoogle Scholar
  22. 22.
    Muller MC, Richard S, Kamins TI (2002) Device electronics for integrated circuits, 3rd edn. Wiley, HobokenGoogle Scholar
  23. 23.
    Colinge CA, Colinge J-P (2005) Physics of semiconductor devices. Springer, BerlinGoogle Scholar
  24. 24.
    Trew RJ (2005) High-frequency solid-state electronic devices. IEEE Trans Electron Devices 52(5):638–649CrossRefGoogle Scholar
  25. 25.
    Dal Fabbro PA, Kayal M (2010) Linear CMOS RF power amplifiers for wireless applications, 1st ed. SpringerGoogle Scholar
  26. 26.
    Bose S, Kumar AA, Gupta SM, Gupta RS (2001) A complete analytical model of GaN MESFET for microwave frequency applications. Microelectronics J 32(12):983–990CrossRefGoogle Scholar
  27. 27.
    Aminbeidokhti A, Orouji AA (2011) A novel 4H-SiC MESFET with modified channel depletion region for high power and high frequency applications. Phys E Low-Dimensional Syst Nanostructures 44(3):708–713CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentSemnan UniversitySemnanIran

Personalised recommendations