Advertisement

Silicon

pp 1–8 | Cite as

Deep Dry Etching of Silicon with Scallop Size Uniformly Larger than 300 nm

  • Yuanwei Lin
  • Renzhi Yuan
  • Xinshuai Zhang
  • Zhenpeng Chen
  • Haimiao Zhang
  • Ziduo Su
  • Shengjun Guo
  • Xiaoxin Wang
  • Chun Wang
Original Paper
  • 5 Downloads

Abstract

High aspect ratio features in silicon have broad applications in micro-electro-mechanical systems, microfluidic control and advanced packaging. This structure is usually fabricated by Bosch process, and the corresponding scallop should be controlled. Obtaining large scallop size seems easier than that of small scallop, however, it is a big challenge to obtain uniform large scallop. Herein, by using dry etching system, we demonstrate a novel high aspect ratio silicon trench with scallop size uniformly larger than 300 nm in both single crystal silicon and polycrystalline silicon. Additionally, the difference between single crystal silicon etching and polycrystalline silicon etching is compared. This work is beneficial to understanding the silicon etching mechanism in Bosch process and has potential applications in microelectronic and microfluidic devices.

Keywords

Deep silicon trench Dry etching Bosch process Scallop Mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was conducted with partial support from National Science and Technology Major Project of China. The authors thank Dr. Gangli Chen for beneficial discussions on this work.

Supplementary material

12633_2018_9948_MOESM1_ESM.docx (5.1 mb)
DOC 5.05 MB

References

  1. 1.
    Lärmer F, Schilp A (1996) Patents DE 4241045, US 5501893 and EP 625285Google Scholar
  2. 2.
    Lai S, Johnson D, Westerman R, Nolan J, Purser D et al (2003) Scalloping minimization in deep Si etching on unaxis DSE tools. Proc SPIE 4979:43–50CrossRefGoogle Scholar
  3. 3.
    Roxhed N, Griss P, Stemme G (2007) A method for tapered deep reactive ion etching using a modified Bosch process. J Micromech Microeng 17:1087–1092CrossRefGoogle Scholar
  4. 4.
    Choi CH, Kim CJ (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17:5326–5333CrossRefGoogle Scholar
  5. 5.
    Kim GH, Lee BH, Im H, Jeon SB, Kim D et al (2016) Controlled anisotropic wetting of scalloped silicon nanogroove. RSC Adv 6:41914–41918CrossRefGoogle Scholar
  6. 6.
    Voss LF, Shao Q, Conway AM, Reinhardt CE, Graff RT et al (2013) Smooth bosch etch for improved Si diodes. IEEE Electron Device Lett 34:1226–1228CrossRefGoogle Scholar
  7. 7.
    Lin PR, Zhang GQ, van Zeijl HW, Lian BH, Wang Y et al (2015) Effects of silicon via profile on passivation and metallization in TSV interposers for 2.5D integration. Microelectron Eng 134:22–26CrossRefGoogle Scholar
  8. 8.
    Parka WJ, Kim JH, Cho SM, Yoon SG, Suh SJ et al (2003) High aspect ratio via etching conditions for deep trench of silicon. Surf Coat Tech 171:290–295CrossRefGoogle Scholar
  9. 9.
    Laermer F, Urban A (2003) Challenges, developments and applications of silicon deep reactive ion etching. Microelectron Eng 67-68:349–355CrossRefGoogle Scholar
  10. 10.
    Wu B, Kumar A, Pamarthy S (2010) High aspect ratio silicon etch: a review. J Appl Phys 108:051101CrossRefGoogle Scholar
  11. 11.
    Kok KW, Yoo WJ, Sooriakumar K, Pan JS, Lee EY (2002) Investigation of in situ trench etching process and Bosch process for fabricating highaspect-ratio beams for microelectromechanical systems. J Vac Sci Technol B 20:1878–1883CrossRefGoogle Scholar
  12. 12.
    Wang X, Zeng W, Lu G, Russo OL, Eisenbraun E (2007) High aspect ratio Bosch etching of sub- 0.25 μm trenches for hyperintegration applications. J Vac Sci Technol B 25:1376–1381CrossRefGoogle Scholar
  13. 13.
    de Silva CM, Hutchins N, Marusic I (2015) Uniform momentum zones in turbulent boundary layers. J Fluid Mech 786:309–331CrossRefGoogle Scholar
  14. 14.
    Eisma J, Westerweel J, Ooms G, Elsinga GE (2015) Interfaces and internal layers in a turbulent boundary layer. Phys Fluids 27:055103CrossRefGoogle Scholar
  15. 15.
    Walker MJ (2001) Comparison of Bosch and cryogenic processes for patterning high aspect ratio features in silicon. Proc SPIE 4407:89–99CrossRefGoogle Scholar
  16. 16.
    Ouyang Z, Xu W, Ruzic DN, Kiehlbauch M, Schrinsky A et al (2014) Finite-element simulation models and experimental verification for through-silicon-via etching: Bosch process and single-step etching. J Vac Sci Technol A 32:041303CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Semiconductor EtchingNAURA Technology Group Co., Ltd.BeijingChina
  2. 2.Laboratory of Electron MicroscopeNAURA Technology Group Co., Ltd.BeijingChina

Personalised recommendations