Advertisement

Silicon

, Volume 11, Issue 1, pp 501–511 | Cite as

Structural, Half-Metallic, Optical, and Thermoelectric Study on the Zr2TiX (X = Al, Ga, Ge, Si) Heuslers: by DFT

  • Nosrat-Ali Vahabzadeh
  • Arash BoochaniEmail author
  • Seyed Moahammad Elahi
  • Hossein Akbari
Original Paper

Abstract

Based on the density functional theory (DFT) framework, the mechanical, half-metallic (HF), optical and thermoelectric properties of Zr2TiX (X = Al, Ga, Ge, Si) Heusler compounds are calculated. The mechanical calculations show good agreement of the lattice constant results with other experiment. The magnetic moments of Zr2TiX (X = Al, Ga, Ge, Si) compounds have been calculated by 1.95, 1.85, 2 and 2.1μB respectively and their stability were founded in the ferromagnetic phase for all cases. The density of states (DOS) indicates splitting states on Fermi level due to Zr d and Ti d overlapping by an asymmetry behavior at two dp and dn spins. The elastic stability, Paugh and Cauchy coefficients imply to the soft and ductility nature of these materials. Also, the optical parameters such as dielectric, refraction, absorption and loss functions have been shown the optical response in the visible area. The thermoelectric treatments indicate good electronic and thermal conductivity with high Seebeck and merit coefficient which is sensitive to the external magnetic moments.

Keywords

Zr2TiX (X = Al, Ga, Ge, Si) Half-metallic Optical properties DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prinz GA (1995) Phys Today 48:58CrossRefGoogle Scholar
  2. 2.
    Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura K (1998) Nature 395:677CrossRefGoogle Scholar
  3. 3.
    Park JH, Vescovo E, Kim HJ, Kwon C, Ramecsh R, Venkatesan T (1998) Nature 392:794CrossRefGoogle Scholar
  4. 4.
    Hashemifar SJ, Kratzer P, Scheffler M (2005) Phys Rev Lett 94:096402CrossRefGoogle Scholar
  5. 5.
    Felser T, Graf C, Parkin SSP (2011) Prog Solid State Chem 39:1CrossRefGoogle Scholar
  6. 6.
    Mavropoulos P, Lezaic M, Blugel S (2005) Phys Rev B 72:174428CrossRefGoogle Scholar
  7. 7.
    Lezaic M, Mavropoulos PH, Enkovaara J, Bihlmayer G, Bluge S (2006) Phys Rev Lett 97:026404CrossRefGoogle Scholar
  8. 8.
    Chadov S, Graf T, Chadova K, Dai X, Casper F, Fecher GH, Felser C (2011) Phys Lett 107:47202CrossRefGoogle Scholar
  9. 9.
    Boochani A, Abolhasani MR, Ghoranneviss M, Elahi M (2010) Commun Theor Phys 54:148CrossRefGoogle Scholar
  10. 10.
    Rezaee S, Boochani A, Majidiyan M, Ghaderi A, Solaymani S, Naseri M (2014) Rare Met 33:615–621CrossRefGoogle Scholar
  11. 11.
    Boochani A, Khosravi H, Khodadadi J, Solaymani S, Sarmazdeh MM, Mendi R T, Elahi SM (2015) Commun Theor Phys 63:641CrossRefGoogle Scholar
  12. 12.
    Ahmadian F, Boochani A (2011) Physica B 406:2865–2870CrossRefGoogle Scholar
  13. 13.
    Boochani A, Nowrozi B, Khodadadi J, Solaymani S, Jalali-Asadabadi S (2017) J Phys Chem C 121:3978–3986CrossRefGoogle Scholar
  14. 14.
    de Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1983) Phys Rev Lett 50:2024CrossRefGoogle Scholar
  15. 15.
    Zutic I, Fabian J, Das Sarma S (2004) Rev Mod Phys 76:323CrossRefGoogle Scholar
  16. 16.
    Zenasni HH, Faraoun I, Esling C (2013) J Magn Magn Mater 333:162CrossRefGoogle Scholar
  17. 17.
    Casper F, Graf T, Chadov S, Balke B, Felser C (2012) Semicond Sci Technol 27:10172CrossRefGoogle Scholar
  18. 18.
    Liu GD, Dai X F, Yu SY, Zhu ZY, Chen JL, Wu G H, Zhu H, Xiaob JQ (2006) Phys Rev B 74:054435CrossRefGoogle Scholar
  19. 19.
    Wei XP, Chu SB, Mao GY, Deng H, Lei T, Hu XR (2011) J Magn Mater 323:2295CrossRefGoogle Scholar
  20. 20.
    Liu GD, Dai X, Liu HY, Lhen JL, Li YX (2008) Phys Rev B 77:014424CrossRefGoogle Scholar
  21. 21.
    Bayar E, Kervan N, Kervan S (2011) J Magn Mater 323:2945CrossRefGoogle Scholar
  22. 22.
    Fang QL, Zhang JM, Xu KW, Ji V (2013) J Magn Mater 345:171CrossRefGoogle Scholar
  23. 23.
    Kervan N, Kervan S, Magn J (2012) Magn Mater 324:645CrossRefGoogle Scholar
  24. 24.
    Wei XP, Deng JB, Mao GY, Chu SB, Hu XR (2012) Intermetallics 299:86CrossRefGoogle Scholar
  25. 25.
    Jia HY, Dai X, Wang LY, Liu R, Wang XT, Li PP, Cui YYT, Liu GD, Magn J (2014) Magn Mater 367:33CrossRefGoogle Scholar
  26. 26.
    Birsan A, Palade P, Kuncser V (2013) J Magn Magn 331:109CrossRefGoogle Scholar
  27. 27.
    Ahmadian F, Salary A (2014) Intermetallics 46:243CrossRefGoogle Scholar
  28. 28.
    Wang XT, Cui YT, Liu XF, Liu GD (2015) J Magn Magn Mater 394:50CrossRefGoogle Scholar
  29. 29.
    Birsan A (2014) Curr Appl Phys 14:1434CrossRefGoogle Scholar
  30. 30.
    Deng Z-Y, Zhang J-M (2016) J Magn Magn Mater 397:120CrossRefGoogle Scholar
  31. 31.
    Deng Z-Y, Zhang J-M (2016) J Magn Magn Mater 409:28CrossRefGoogle Scholar
  32. 32.
    Gao YC, Wang XT, Rozale H, Lu JW (2015) J Kor Phys Soc 67:881CrossRefGoogle Scholar
  33. 33.
    Wang XT, Lin TT, Rozale HH, Dai X, Liu GD (2016) J Magn Magn Mater 402:190CrossRefGoogle Scholar
  34. 34.
    Alijani V, Winterlik J, Fecher GH, Naghavi SS, Felser C (2011) Phys Rev B 83:184428CrossRefGoogle Scholar
  35. 35.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRefGoogle Scholar
  36. 36.
    Bauer GEW, Saitoh E, van Wees BJ (2012) Nat Mater 11:391CrossRefGoogle Scholar
  37. 37.
    Slachter A, Bakker FL, Adam J-P, van Wees BJ (2010) Nat Phys 6:879CrossRefGoogle Scholar
  38. 38.
    Chadov S, Graf T, Chadova K, Dai X, Casper F, Fecher GH, Felser C (2011) Phys Rev Lett 107:047202CrossRefGoogle Scholar
  39. 39.
    Katsnelson MI, Irkhin VY, Chioncel L, Lichtenstein AI, de Groot RA (2008) Rev Mod Phys 80:315CrossRefGoogle Scholar
  40. 40.
    Chadov S, Graf T, Chadova K, Dai X, Casper F, Fecher GH, Felser C (2011) Phys Rev Lett 107:047202CrossRefGoogle Scholar
  41. 41.
    Slater JC (1964) Adv Quant Chem 1:5564Google Scholar
  42. 42.
    Madsen GKH, Singh DJ (2006) BoltzTrap: a code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71CrossRefGoogle Scholar
  43. 43.
    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2K, an augmented plane wave + local orbitals program for calculating crystal properties 3-9501031-1-2, Karlheinz Schwarz, Technische Universität, WienGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865CrossRefGoogle Scholar
  45. 45.
    Ren X, Rinke P, Joas C, Scheffler M (2012) J Mater Sci 47:7447CrossRefGoogle Scholar
  46. 46.
    Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244CrossRefGoogle Scholar
  47. 47.
    Wei X-P, Zhang Y-L, Wang T, Sun X-W, Song T, Guo P, Deng J-B (2017) Mater Res Bull 86:139–145CrossRefGoogle Scholar
  48. 48.
    Wang JY, Zhou YC (2004) Phys Rev B 69:214111–214119CrossRefGoogle Scholar
  49. 49.
    Birsan A (2014) Curr Appl Phys 14:1434CrossRefGoogle Scholar
  50. 50.
    Deng Z-Y, Zhang J-M (2016) J Magn Mater 397:120CrossRefGoogle Scholar
  51. 51.
    Pettiifor DG (1992) J Mater Sci Technol 8:345–349CrossRefGoogle Scholar
  52. 52.
    Liu Y, Hu W-C, Li D-J, Zeng X-Q, Xu C-S, Yang X-J (2012) Intermetallics 31:257–263CrossRefGoogle Scholar
  53. 53.
    Rahman MD, Rahaman MD (2015) The structural, elastic, electronic and optical properties of MgCu under pressure: a first-principles study arXiv preprint arXiv:1510.02020
  54. 54.
    Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) J Comput Phys 131:233CrossRefGoogle Scholar
  55. 55.
    Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, ChicagoGoogle Scholar
  56. 56.
    Materials studio castep manual_Acccelrys (2010) 261–262Google Scholar
  57. 57.
    Hossain MA, Ali MS, Islam AKMA (2012) Eur Phys J B 85:396.  https://doi.org/10.1140/ejpb/e2012-30799 CrossRefGoogle Scholar
  58. 58.
    Kondo T, Takeuchi T, Tsuda S, Shin S (2006) Phys Rev B 74:224511CrossRefGoogle Scholar
  59. 59.
    Shankar A, Rai DP, Khenata R, Maibam J, Sandeep, Thapa RK (2015) J Alloys Compd 619:621–626CrossRefGoogle Scholar
  60. 60.
    Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ (2008) Science 321:554CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Nosrat-Ali Vahabzadeh
    • 1
  • Arash Boochani
    • 2
    Email author
  • Seyed Moahammad Elahi
    • 3
  • Hossein Akbari
    • 1
  1. 1.Department of Physics, Ardabil BranchIslamic Azad UniversityArdabilIran
  2. 2.Department of Physics, Kermanshah BranchIslamic Azad UniversityKermanshahIran
  3. 3.Department of Physics, Faculty of Sciences, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations