Advertisement

Silicon

, Volume 11, Issue 2, pp 1011–1015 | Cite as

A Study on the Hopping Nature of an Excess Tunnel Current in Heavily Doped Silicon pn Junction Diodes at Cryogenic Temperatures

  • V. L. BorblikEmail author
  • Yu. M. Shwarts
  • M. M. Shwarts
  • A. B. Aleinikov
Original Paper
  • 11 Downloads

Abstract

Purpose of the work is to study a nature of the excess tunnel current in heavily doped silicon pn junction diodes with lengthy compensation region in the pn junction. In such the diodes, formation of the system of electron and hole “lakes” and hopping conduction via them is possible at low temperatures. And indeed, electric measurements have shown that this excess tunnel current is characterized by Mott’s temperature dependency. It is reasonable to investigate additionally an influence of magnetic field. Previous studies of the magnetic field influence were limited by the field of 9.4 T and alone temperature of 4.2 K. Now the measurements have been carried out at several temperatures close by the liquid helium temperature and at the magnetic fields up to 13.6 T. It was found that in magnetic fields beyond 9.4 T, the diode magnetoresistance demonstrates transition to field dependency predicted theoretically for variable range hopping conduction of Mott’s type via impurity centers. Thus the excess tunnel current in the diode has character of hopping conduction via impurity centers, irrespective of whether the system of electron and hole “lakes” is generated in compensation region of the pn junction or not.

Keywords

Silicon pn junction diode Heavy doping Excess tunnel current Hopping conduction Magnetoresistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borblik VL, Shwarts YuM, Shwarts MM, Fonkich AM (2010) Concerning the nature of relaxation oscillations in silicon diodes in the cryogenic temperature region. Cryogenics 50:417–420CrossRefGoogle Scholar
  2. 2.
    Szmyrka-Grzebyk A, Lipinski L (1993) Low temperature current-voltage characteristics of silicon diodes used as thermometers. Cryogenics 33:222–225CrossRefGoogle Scholar
  3. 3.
    (2004) Temperature measurement and control, Product Catalog. Published by Lake Shore Cryotronics, Inc.Google Scholar
  4. 4.
    Shwarts YuM, Borblik VL, Kulish NR, Sokolov VN, Shwarts MM, Venger EF (1999) Silicon diode temperature sensor without a kink of the response curve in cryogenic temperature region. Sens Actuators 76:107–111CrossRefGoogle Scholar
  5. 5.
    Borblik VL, Shwarts YuM, Shwarts MM (2005) Revealing the hopping mechanism of conduction in heavily doped silicon diodes. Semicond Phys Quantum Electron Optoelectron 8:41–44Google Scholar
  6. 6.
    Borblik VL, Shwarts YuM, Shwarts MM (2007) Manifestation of disorder effects in excess tunnel current of heavily doped silicon diodes. Bull Russ Acad Sci: Phys 71:1073–1075CrossRefGoogle Scholar
  7. 7.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New YorkGoogle Scholar
  8. 8.
    Del Alamo JA, Swanson RM (1986) Forward-bias tunneling: a limitation to bipolar device scaling. IEEE Electron Device Lett 7:629–631CrossRefGoogle Scholar
  9. 9.
    Shklovskii BI (1973) Hopping conduction of heavily doped semiconductors. Sov Phys-Semicond 7:77–83Google Scholar
  10. 10.
    Borblik VL, Rudnev IA, Shwarts YuM, Shwarts MM (2010) Negative magnetoresistance of heavily doped silicon pn junction. Semicond Phys Quantum Electron Optoelectron 14:88–90CrossRefGoogle Scholar
  11. 11.
    Nguen VL, Spivak BZ, Shklovskii BI (1985) Aaronov-Bohm oscillations with normal and superconducting flux quanta in hopping conductivity. JETP Lett 41:42–45Google Scholar
  12. 12.
    Nguen VL, Spivak BZ, Shklovskii BI (1985) Tunnel hopping in disordered systems. Sov Phys-JETP 62:1021–1029Google Scholar
  13. 13.
    Sivan U, Entin-Wohlman O, Imry Y (1988) Orbital magnetoconductance in the variable-range-hopping regime. Phys Rev Lett 60:1566–1569CrossRefGoogle Scholar
  14. 14.
    Entin-Wohlman O, Imry Y, Sivan U (1989) Orbital magnetoconductance in the variable-range-hopping regime. Phys Rev B 40:8342–8348CrossRefGoogle Scholar
  15. 15.
    Shkovskii BI, Efros AL (1984) Electronic properties of doped semiconductors. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Dai P, Zhang Y, Sarachik PM (1991) Critical conductivity exponent for Si:B. Phys Rev Lett 66:1914–1917CrossRefGoogle Scholar
  17. 17.
    Mott N, Davis E (1979) Electronic processes in non-crystalline materials. Oxford University, OxfordGoogle Scholar
  18. 18.
    Ionov AN, Rentzsch R, Shlimak I (1996) Role of electron “lakes” in the negative magnetoresistance effect in the region of Mott hopping conductivity. JETP Lett 63:199–203CrossRefGoogle Scholar
  19. 19.
    Dai P, Friedman JR, Sarachik MP (1993) Hopping conduction in doped silicon: the apparent absence of quantum interference. Phys Rev B 48:4875–4878CrossRefGoogle Scholar
  20. 20.
    Rivas C, Lake R, Frensley WR, Klimeck G, Thompson PE, Hobart KD, Rommel SL, Berger PR (2003) Full band modeling of the excess current in a delta-doped silicon tunnel diode. J Appl Phys 94:5005–5013CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • V. L. Borblik
    • 1
    Email author
  • Yu. M. Shwarts
    • 1
    • 2
  • M. M. Shwarts
    • 1
  • A. B. Aleinikov
    • 1
    • 2
  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsKievUkraine
  2. 2.International Laboratory of High Magnetic Fields and Low TemperaturesWroclawPoland

Personalised recommendations