Advertisement

Silicon

, Volume 11, Issue 2, pp 995–1000 | Cite as

Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation

  • Sakine Rezaie Kahkhaie
  • Halimeh RajabzadehEmail author
  • Meysam NajafiEmail author
  • Razieh Razavi
  • Milad Janghorban LaricheEmail author
Original Paper
  • 27 Downloads

Abstract

In this study, by using of density functional theory calculations, the oxidation of methylene on surface of Tin-doped boron nitride nanocage via Langmuir Hinshelwood and Eley Rideal mechanisms was investigated. Results show that in Tin-doped boron nitride nanocage, there are three strong covalent bonds between Tin atom and bordering nitrogen atoms. Calculated data reveal that adsorption of oxygen molecule on surface of Tin-doped boron nitride nanocage increased the activity and strength of boron nitride nanocage. Results show that computed energy barrier for the first reaction oxidation of methylene on surface of boron nitride nanocage via Langmuir Hinshelwood mechanism was lower than Eley Rideal mechanism. In according to obtained thermodynamic data, it can be concluded the boron nitride nanocage was high potential catalyst for oxidation of methylene.

Keywords

Catalyst Nanocage Mechanism Oxidation Methylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank all chemistry teachers for scientific supports.

References

  1. 1.
    Kiani A, Haratipour P, Ahmadi M, Dorabei RZ, Mahmoodi A (2017) J Water Supply Res T 66:239–248CrossRefGoogle Scholar
  2. 2.
    Parsaee Z, Haratipour P, Janghorban Lariche M, Vojood A (2018) Ultrason Sonochem 41:337–349CrossRefGoogle Scholar
  3. 3.
    Haratipour P, Baghban A, Mohammadi AH, Hosseininazhad SH, Bahadori A (2017) J Mol Liq 242:146–159CrossRefGoogle Scholar
  4. 4.
    Doranehgard MH, Samadyar H, Mesbah M, Haratipour P, Samiezade S (2017) Fuel 202:29–35CrossRefGoogle Scholar
  5. 5.
    Baghban A, Sasanipour J, Haratipour P, Alizad M, Vafaee Ayouri M (2017) Chem Eng Res Des 126:67–75CrossRefGoogle Scholar
  6. 6.
    Gao W, Haratipour P, Kahkha MRR, Tahvili A (2018) Ultrason Sonochem 44:152–161CrossRefGoogle Scholar
  7. 7.
    Freund HJ, Meijer G, Scheffler M (2011) Angew Chem 50:10064–10094CrossRefGoogle Scholar
  8. 8.
    Johnson RS, DeLaRiva A, Ashbacher V (2013) Phys Chem Chem Phys 15:7768–7776CrossRefGoogle Scholar
  9. 9.
    Su HY, Yang MM, Bao XH, Li WX (2008) J. Phys Chem C 112:17303–17310CrossRefGoogle Scholar
  10. 10.
    Chen MS, Cai Y, Yan Z (2007) Surf Sci 601:5326–5331CrossRefGoogle Scholar
  11. 11.
    Piccinin S, Stamatakis M (2014) ACS Catal 4:2143–2152CrossRefGoogle Scholar
  12. 12.
    Liu W, Zhu Y, Lian J, Jiang Q (2007) J Phys Chem C 111:1005–1009CrossRefGoogle Scholar
  13. 13.
    Liu DJ (2007) J Phys Chem C 111:14698–14706CrossRefGoogle Scholar
  14. 14.
    Wallace WT, Whetten RL (2002) J. Am Chem Soc 124:7499–7505CrossRefGoogle Scholar
  15. 15.
    Chang C, Cheng C, Wei C (2008) J Chem Phys 128:124710–124710CrossRefGoogle Scholar
  16. 16.
    Du J, Wu G, Wang J (2010) J Phys Chem A 114:10508–10514CrossRefGoogle Scholar
  17. 17.
    Sharifian S, Harasek M, Haddadi B (2016) Chem Prod Process Mod 11:67–72Google Scholar
  18. 18.
    Sharifian S, Miltner M, Harasek M (2016) Chem Eng Trans 52:565–570Google Scholar
  19. 19.
    Sharifian S, Harasek M (2015) Chem Eng Trans 45:409–414Google Scholar
  20. 20.
    Sharifian S, Harasek M (2015) Chem Eng Trans 45:1003–1008Google Scholar
  21. 21.
    Ci L, Xu Z, Wang L, Gao W, Ding F (2008) Nano Res 1:116–122CrossRefGoogle Scholar
  22. 22.
    Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Geim AK, Morozov S (2004) Science 306:666–669CrossRefGoogle Scholar
  24. 24.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRefGoogle Scholar
  25. 25.
    Morozov S, Novoselov K, Katsnelson M (2008) Phys Rev Lett 100:016602CrossRefGoogle Scholar
  26. 26.
    Geim AK (2009) Science 324:1530–1534CrossRefGoogle Scholar
  27. 27.
    Ratinac KR, Yang W, Ringer SP, Braet F (2010) Environ Sci Technol 44:1167–1176CrossRefGoogle Scholar
  28. 28.
    Esrafili MD, Saeidi N (2017) Chem Phys Lett 671:49–55CrossRefGoogle Scholar
  29. 29.
    Esrafili MD, Nurazar R (2014) Sur Sci 626:44–48CrossRefGoogle Scholar
  30. 30.
    Esrafili MD, Saeidi N (2015) Phys E 74:382–387CrossRefGoogle Scholar
  31. 31.
    Esrafili MD, Nematollahi P, Abdollahpour H (2016) Appl Sur Sci 378:418–425CrossRefGoogle Scholar
  32. 32.
    Esrafili MD, Nematollahi P, Nurazar R (2016) Superlatt Microstruct 92:60–67CrossRefGoogle Scholar
  33. 33.
    Esrafili MD, Nurazar R (2014) Comput Mat Sci 92:172–177CrossRefGoogle Scholar
  34. 34.
    Tang Y, Liu Z, Dai X, Yang Z, Chen W, Lu Z (2014) Appl Surf Sci 308:402CrossRefGoogle Scholar
  35. 35.
    Lin S, Ye X, Huang J (2015) Phys Chem Chem Phys 17:888CrossRefGoogle Scholar
  36. 36.
    Taw fi k SA, Cui XY, Carter DJ, Stamp fl C (2015) Phys Chem Chem Phys 17:6925CrossRefGoogle Scholar
  37. 37.
    Davies AG (2004) Organotin chemistry, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  38. 38.
    Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) J Mater Chem 21:5972CrossRefGoogle Scholar
  39. 39.
    Zhou Q, Wang C, Fu Z, Tang Y, Zhang H (2014) Comput Mater Sci 83:398–402CrossRefGoogle Scholar
  40. 40.
    Krasheninnikov AV, Lehtinen PO, Foster AS (2009) Phys Rev Lett 102Google Scholar
  41. 41.
    Li F, Zhao J, Chen Z (2012) J Phys Chem C 116:2507–2514CrossRefGoogle Scholar
  42. 42.
    Wang X, Li X, Zhang L, Yoon Y, Weber PK (2009) Science 324:768–771CrossRefGoogle Scholar
  43. 43.
    Reddy ALM, Srivastava A, Gowda SR, Gullapalli H (2010) ACS Nano 4:6337–6342CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  45. 45.
    Andzelm J, Kolmel C (1995) J Chem Phys 103:9312–9320CrossRefGoogle Scholar
  46. 46.
    Gan LH, Zhao JQ (2009) Phys E 41:1249–1252CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Ma L, Zhang JM, Xu KW, Ji V (2015) Appl Surf Sci 343:121–127CrossRefGoogle Scholar
  49. 49.
    Zhang T, Xue Q, Shan M, Jiao Z (2012) J Phys Chem C 116:19918–19924CrossRefGoogle Scholar
  50. 50.
    Wu M, Cao C, Jiang J (2010) N J Phys 12:063020CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ZabolZabolIran
  2. 2.Department of Chemistry, Dezful BranchIslamic Azad UniversityDezfulIran
  3. 3.Medical Biology Research CentreKermanshah University of Medical SciencesKermanshahIran
  4. 4.Department of Chemistry, Faculty of ScienceUniversity of JiroftJiroftIran
  5. 5.Abadan School of Medical SciencesAbadanIran

Personalised recommendations