, Volume 11, Issue 2, pp 1035–1045 | Cite as

Preparation and Characterization of Ni0.5Zn0.5Fe2O4 + Polyurethane Nanocomposites Using Melt Mixing Method

  • Kavita AgarwalEmail author
  • Mahender Prasad
  • Mohit Katiyar
  • Rakesh Kumar
  • N Eswara Prasad
Original Paper


In this study, nanocomposites of Ni0.5Zn0.5Fe2O4/polyurethane were prepared by melt mixing method and determined the influence of amount of Ni0.5Zn0.5Fe2O4 (0, 0.5, 1, 2, and 3 wt%) fillers on magnetic induction of segmented polyurethane composites with optimum processing conditions. The obtained nanocomposites particles of all the samples were characterized by TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry), XRD (X-Ray Diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (Scanning electron microscopy) and Hysteresis measurements (P-E Loop tracer) & VSM (Vibrating Sample Magnetometer). XRD showed the strong characteristic diffraction peaks for ferrite while diffused diffraction pattern for polyurethane. Moreover on increasing nano fillers concentration causes the agglomeration in the composites owing to irregular distribution and consequently the strength of the material reduced. FTIR spectroscopy showed that the positions of peaks for distinctive functional groups of both ferrite and SPU. Micrographs showed that Ferrite/SPU nanocomposites having good dispersion of filler in matrix.


Nanocomposites Segmented polyurethane Ni0.5Zn0.5Fe2O4 ferrite fillers Melt mixing method Electrical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge with thanks to Mr. Amitabh Chakraborty, Technical officer, DMSRDE, Kanpur for their valuable suggestions in thermal analysis.

Compliance with Ethical Standards

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    Safronov AP, Beketov IV, Komogorstev SV, Kurlyandskaya GV, Medvedev AI, Leiman DV, Larrannaga A, Bhagat SM (2013) Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Adv 3:052135CrossRefGoogle Scholar
  2. 2.
    Shen W, Zhang L, Zhao B, Du Y, Zhou X (2018) Growth mechanism of octahedral like nickel ferrite crystals prepared by modified hydrothermal method and morphology dependent magnetic performance. Ceram Int. Corrected Proof
  3. 3.
    Senthil VP, Gajendiran J, Gokul Raj S, Shanmugavel T, Ramesh Kumar G, Reddy CP (2018) Study of structural and magnetic properties of cobalt ferrite (CoFe2O4) nanostructures. Chem Phys Lett 695:19–23CrossRefGoogle Scholar
  4. 4.
    Gupta N, Jain P, Rana R, Shrivastava S (2017) Current development in synthesis and characterization of nickel ferrite nanoparticle. Materials Today A 4:342–349Google Scholar
  5. 5.
    Thomas AS, Simon AM, Waddill GD, Switzer JA (2002) Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. JACS 124:7604–7609CrossRefGoogle Scholar
  6. 6.
    Sayed AME, Hamzawy EMA (2006) Structure and magnetic properties of nickel-zinc ferrite nanoparticles prepared by glass crystallization method. Monatsh Chem 137:1119–1125CrossRefGoogle Scholar
  7. 7.
    Gupta AK, Gupta M (2005) Bio materials, synthesis and surface engineering of iron oxide nano particles for biomedical application. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  8. 8.
    Aphesteguy JC, Jacobo SE, Lezama L, Kurlyandskaya GV, Schegoleva NN (2014) Microwave resonant and zero-field absorption study of doped magnetite prepared by a co-precipitation method. Molecules 19:8387–8401CrossRefGoogle Scholar
  9. 9.
    Haneda K, Morrish AH (1988) Noncollinear magnetic structure of CoFe2O4 small particles. J Appl Phys 63:4258CrossRefGoogle Scholar
  10. 10.
    Pannaparayil T, Marande R, Komarneni S (1991) Magnetic properties of high-density Mn-Zn ferrites. J Appl Phys 69:5349CrossRefGoogle Scholar
  11. 11.
    Musto P, Larobina D, Cotugno S, Straffi P, Florio GD, Mensitieri G (2013) Confocal Raman imaging, FTIR spectroscopy and kinetic modelling of the zinc oxide/stearic acid reaction in a vulcanizing rubber. Polymer 54:685–693CrossRefGoogle Scholar
  12. 12.
    Lin Y, Wei Q, Qian G, Yao L, Watkins JJ (2012) Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding. Macromolecules 45:8665–8673CrossRefGoogle Scholar
  13. 13.
    Ucar H, Ipus JJ, Laughlin DE, McHenry ME (2013) Tuning the Curie temperature in γ-FeNi nanoparticles for magneto caloric applications by controlling the oxidation kinetics. J Appl Phys 113:17A918CrossRefGoogle Scholar
  14. 14.
    Nathani H, Misra RDK (2004) Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mater Sci Eng B 113:228– 235CrossRefGoogle Scholar
  15. 15.
    Chaterjee A, Das D, Chaktvorthy D, Chouhdhary K (1990) Mössbauer spectra of nanocrystalline Fe and Fe-Cr particles in sol-gel-derived SiO2 glass. Appl Phys Lett 57:1360CrossRefGoogle Scholar
  16. 16.
    Terziyan TV, Safronov AP, Petrov AV, Volodina NS, Beketov IV (2014) Effect of the chemical nature of metal oxide on adhesion to the polyacrylate matrix in filled nanocomposites. Russ J Phys Chem A 88:1300–1306CrossRefGoogle Scholar
  17. 17.
    Shanmugavel T, Gokul Raj S, Ramesh Kumar G, Rajarajan G, Saravanam D (2015) Cost effective preparation and characterization of nanocrystalline nickel ferrites (NiFe2O4) in low temperature regime. Journal of King Saud University-Science 27:176–181CrossRefGoogle Scholar
  18. 18.
    Ling ZY, Xiong MR, Zhang QQ (2000) Effects of iron deficiency on magnetic properties of (Ni0.76Zn0.24)O(Fe2O3)0.575 ferrite. J Magn Magn Mater 219:9–14CrossRefGoogle Scholar
  19. 19.
    Von Aulock WE (1965) Handbook of microwave ferrite materials. Academic Press, London, p 379Google Scholar
  20. 20.
    Sileo E, Rotelol R, Jacobo S (2002) Nickel zinc ferrites prepared by the citrate precursor method. Physica B 320:257–260CrossRefGoogle Scholar
  21. 21.
    Parvathy NN, Pajonk GM, Rao AV (1999) Growth and optical properties of quantized CdS crystallites in TEOS silica xerogels. J Mater Synth Process 7:221–228CrossRefGoogle Scholar
  22. 22.
    Jiang JS, Yang XL, Gao L, Gao JK, Jiang JZ (1999) Synthesis and characterization of nanocrystalline zinc ferrite. Nanostruct Mater 12:143–146CrossRefGoogle Scholar
  23. 23.
    Arnold RL, Rader CP (1992). In: Harper CA (ed) Thermoplastic elastomers in handbook of plastics, elastomers and composites. McGraw Hill, New YorkGoogle Scholar
  24. 24.
    Pal V, Thakur OP, Dwivedi RK (2015) Investigation of MPB region in lead free BLNT-BCT system through XRD and Raman spectroscopy. J Phys D Appl Phys 48:055301CrossRefGoogle Scholar
  25. 25.
    Pal V, Dwivedi RK, Thakur OP (2014) Synthesis and ferroelectric behavior of Gd doped BNT ceramics. Curr Appl Phys 14:99–107CrossRefGoogle Scholar
  26. 26.
    Zhao DL, Lv Q, Shen ZM (2009) Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J Alloys Compd 480:634–638CrossRefGoogle Scholar
  27. 27.
    Istanbullu H, Ahmed S, Sheraz MA, Irehman U (2013) Development and characterization of novel polyurethane films impregnated with tolfenamic acid for therapeutic applications. Biomed Res Int:8, Article ID 178973Google Scholar
  28. 28.
    Maensiri S, Masingboon C, Boonchom B, Seraphin S (2007) A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr Mater 56:797–800CrossRefGoogle Scholar
  29. 29.
    Murthy VRK, Sobhanadri J (1976) Dielectric properties of some nickel-zinc ferrites at radio frequency. Phys Status Solidi A 36:133–135CrossRefGoogle Scholar
  30. 30.
    Selvan RK, Augustin CO, Berchmans LB, Sarawathi R (2003) Combustion synthesis of CuFe2O4. Mater Res Bull 38:41–54CrossRefGoogle Scholar
  31. 31.
    Waldron RD (1955) Infrared spectra of ferrites. Physical Review Journals Archive 99:1727–1735Google Scholar
  32. 32.
    Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353CrossRefGoogle Scholar
  33. 33.
    Pal V, Dwivedi RK, Thakur OP (2014) Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics. Mater Res Bull 51:189–196CrossRefGoogle Scholar
  34. 34.
    Pal V, Thakur OP, Dwivedi RK (2015) Effect of co-substitution of La/Li on structure, microstructure, dielectric and piezoelectric behavior of Bi0.50Na0.50TiO3 ceramics. Indian J Phys 89:123– 130CrossRefGoogle Scholar
  35. 35.
    Markys GC (2014) Characterization of ferroelectric bulk materials and thin films. Springer, BerlinGoogle Scholar
  36. 36.
    Luies ME, Glass AM (1977) Principle and applications of ferroelectrics and related materials. Clorendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Defence Materials and Stores Research & Development Establishment (DMSRDE)KanpurIndia

Personalised recommendations