Advertisement

Silicon

, Volume 11, Issue 2, pp 1017–1021 | Cite as

Amorphization of SiO2 Thin Films by Using 200 MeV Ag15+ Ions

  • Anil Gaikwad
  • Yogesh Mhaisagar
  • Swati Gupta
  • Bhavana Joshi
  • Kandasami Asokan
  • Ashok MahajanEmail author
Original Paper
  • 19 Downloads

Abstract

Effect of swift heavy ions (SHI) on low-k SiO2 thin films has been investigated. SiO2 thin films were deposited on pre-cleaned p-Si substrate by using sol-gel spin coating technique. Further, deposited films were annealed at 400 C to remove structural irregularities. Prepared samples were irradiated with 200 MeV Ag15+ ions at different ion fluence such as 5 × 1011, 1 × 1012 and 5 × 1012 ions/cm2. Deposition of SiO2 was confirmed by using EDAX and FTIR spectroscopy. Increase in ion fluence increases the RMS roughness from 1.49 to 7.79 nm. The transformation of deposited material from polycrystalline to amorphous nature was confirmed from XRD spectra. Increase in SHI fluence decreases the grain size from 181.3 to 74.1 nm for pristine and sample irradiated at 5 × 1011 ions/cm2. Whereas, for sample irradiated with 5 × 1011 ions/cm2 fluence doesn’t show crystalline peak at (011). It is observed that SHI irradiation leads to grain agglomeration with decrease in crystal size at higher fluence. Further, conductivity of the samples under study was observed to be decreased with increase in ion fluence. Thus, it is demonstrated that the surface and structural properties of low-k silica thin films can be tailored by controlling the SHI fluence.

Keywords

Thin film Irradiation Amorphization AFM Sol-gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors are thankful to SERB, DST, New Delhi for providing financial assistance for carrying present research work (Letter No. SR/S3/EECE/0131/2011 dated 29th August 2012) and also grateful to Inter University Accelerator Center (IUAC), New Delhi, India for providing the irradiation and characterization facilities. Anil S. Gaikwad is thankful to UGC, New Delhi for providing financial assistance in the form of BSR Fellowship.

References

  1. 1.
    Streit DC, Gutierrez-Aitken A, Wojtowicz M, Lai R (2005) Compound semiconductor integrated circuit symposium, 2005 (CSIC 05). IEEE, p 4Google Scholar
  2. 2.
    Kayali S (2007) Integrated reliability workshop final report, 2007 (IRW 2007). IEEE International. IEEE, pp vii–viiGoogle Scholar
  3. 3.
    Gaikwad AS, Gupta SA, Mahajan AM (2016) Mater Res Exp 3(8):086403CrossRefGoogle Scholar
  4. 4.
    Devine RA (2012) The physics and technology of amorphous SiO2. Springer Science and Business Media, New YorkGoogle Scholar
  5. 5.
    Garrou P, Bower C, Ramm P (eds) (2011) Handbook of 3d integration: volume 1-technology and applications of 3D integrated circuits. Wiley, New YorkGoogle Scholar
  6. 6.
    Gupta SA, Gaikwad AS, Mahajan AM (2017) J Mater Sci Mater Electron.  https://doi.org/10.1007/s10854-017-7345-0
  7. 7.
    Mhaisagar YS, Gaikwad AS, Khairnar AG, Mahajan AM (2016) Indian J Pure Appl Phys 54:439Google Scholar
  8. 8.
    Singh JP, Dixit G, Pandey K (2014) Mater Lett 122:277CrossRefGoogle Scholar
  9. 9.
    Srivastava PC, Panday SP, Sinha OP (1999) Nucl Instrum Methods B 156:105CrossRefGoogle Scholar
  10. 10.
    Avasthi DK (2000) Curr Sci 78(11):1297Google Scholar
  11. 11.
    Chandramohan S, Sathyamoorthy R, Sudhagar P (2009) Appl Phys A 94:703CrossRefGoogle Scholar
  12. 12.
    Kluth P (2008) Phys Rev Lett 101(17):175503CrossRefGoogle Scholar
  13. 13.
    Awazu K, Ishii S, Shima K, Roorda S, Brebner JL (2000) Phys Rev B 62(6):3689CrossRefGoogle Scholar
  14. 14.
    Slaoui A, Busch MC, Doorhyee E, Toulemonde M, Siffert P (1992) MRS Online Proceedings Library Archive 279Google Scholar
  15. 15.
    Arnoldbik WM, Tomozeiu N, Van Hattum ED, Lof RW, Vredenberg A, Habraken FHPM (2005) Phys Rev B 71(12):125329CrossRefGoogle Scholar
  16. 16.
    Yin S, Chong-hong Z, Yan-cheng M, Heng-qing Z, Li-qing Z, Jie G, Yi-zhun M (2014) Nucl Instrum Methods B 326:68CrossRefGoogle Scholar
  17. 17.
    Song Y, Zhang CH, Yang YT, Gou J, Zhang LQ, He DY (2013) Opt Mater 35(5):1057CrossRefGoogle Scholar
  18. 18.
    Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Rivera A, Agulló-López F (2012) Nucl Instrum Methods B 277:126CrossRefGoogle Scholar
  19. 19.
    Jollet F, Duraud JP, Noguera C, Dooryhee E, Langevin Y (1990) Nucl Instrum Methods B 46 (1–4):125CrossRefGoogle Scholar
  20. 20.
    Vlasukova L, Komarov F, Parkhomenko I, Yuvchenko V, Milchanin O, Mudryi A, Akilbekov A (2017) Vacuum 141:15CrossRefGoogle Scholar
  21. 21.
    Saavedra R, Jiménez-Rey D, Martin P, Vila R (2016) Nucl Instrum Methods B 382:96CrossRefGoogle Scholar
  22. 22.
    Chulapakorn T, Sychugov I, Suvanam SS, Linnros J, Primetzhofer D, Hallen A (2017) Nanotechnology 28:375603CrossRefGoogle Scholar
  23. 23.
    Toulemonde M (1999) Nucl Instrum Methods B 156:1CrossRefGoogle Scholar
  24. 24.
    Kuiri PK, Ghatak J (2000) Vacuum 85:135CrossRefGoogle Scholar
  25. 25.
    Benyagoub A (2006) Nucl Instrum Methods B 245:225CrossRefGoogle Scholar
  26. 26.
    Brucato JR, Strazzulla G, Baratta G (2004) Astron Astrophys 413(2):395CrossRefGoogle Scholar
  27. 27.
    Gosset D, Miro S, Doriot S (2015) Nucl Instrum Methods B 365(A):300CrossRefGoogle Scholar
  28. 28.
    Wang SX, Wang LM, Ewing RC (2000) Phys Rev B 63:024105CrossRefGoogle Scholar
  29. 29.
    Sickafus KE, Grimes RW, Valdez JA (2007) Nat Mater 6:217CrossRefGoogle Scholar
  30. 30.
    Costantini J-M, Miro S, Beuneu F (2015) J Phys Condens Matter 27(49):496001CrossRefGoogle Scholar
  31. 31.
    Bender M, Severin D, Tomut M (2015) J Phys Condens Matter 599:012039Google Scholar
  32. 32.
    Douillard L, Duraud JP (1996) Nucl Instrum Methods B 107(1–4):212CrossRefGoogle Scholar
  33. 33.
    Balamurugan B, Mehta BR, Avasthi DK (2002) J Appl Phys 92(6):3304CrossRefGoogle Scholar
  34. 34.
    Mhaisagar YS, Mahajan AM (2013) J Mater Sci Mater Electron 24(12):4964CrossRefGoogle Scholar
  35. 35.
    Ziegler JF, Ziegler MD, Biersack JP (2010) Nucl Instrum Methods B 268(11–12):1818CrossRefGoogle Scholar
  36. 36.
    Kang J-S, Yu C-L, Zhang F-A (2009) Iran Polym J 18(12):927Google Scholar
  37. 37.
    Kumaravel R, Ramamurthi K, Sulania I (2012) Nucl Instrum Methods B 285:61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Anil Gaikwad
    • 1
  • Yogesh Mhaisagar
    • 1
  • Swati Gupta
    • 1
  • Bhavana Joshi
    • 2
  • Kandasami Asokan
    • 3
  • Ashok Mahajan
    • 1
    Email author
  1. 1.Department of ElectronicsNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of Mechanical EngineeringKorea UniversitySeoulKorea
  3. 3.Inter University Accelerator CenterNew DelhiIndia

Personalised recommendations