Advertisement

Silicon

, Volume 11, Issue 2, pp 837–842 | Cite as

Photoluminescence Study of Deep Level Defects in ZnO Thin Films

  • A. KabirEmail author
  • I. Bouanane
  • D. Boulainine
  • S. Zerkout
  • G. Schmerber
  • B. Boudjema
Original Paper
  • 35 Downloads

Abstract

In the present work, zinc oxide (ZnO) thin films were prepared by heating, at 500 C, metallic Zn films deposited onto Si (100) substrates by RF magnetron sputtering. According to the x-rays diffraction patterns, the polycrystalline hexagonal ZnO phase (wurtzite) was obtained with a preferential orientation along the (101) planes. The increase of both the crystallites size and the Zn-O bond length, as a function of the heating time, reflect the improvement of the crystalline quality of the investigated films. The investigated films emitted in ultraviolet, visible and infrared regions. The ultraviolet emission was linked to the crystalline quality of the films. All the visible emission related defects were identified. Their concentrations vary differently as a function of the heating time. The infrared emission originated from the oxygen anti-sites (OZn). The correlation between the decrease of the electrical resistivity and the increase of both 2 + charged oxygen vacancies (\(V_{O}^{++})\) and hydrogen impurities (H-I) defects suggested that the unintentional n-type conductivity in ZnO came from the collective contribution of \(V_{O}^{++}\) and H-I defects.

Keywords

ZnO Heating time Deep level defects Hydrogen impurities n-type conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge one of them; G. Schmerber for his help during the samples characterization. Thanks are due to G. Ferblantier and D. Muller, from ICube in Strasbourg (France) for their help during the optical measurements.

References

  1. 1.
    Look DC (2001) Mater Sci Eng B 80:383CrossRefGoogle Scholar
  2. 2.
    Ozgür Ü, Alivov YL, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) J Appl Phys 98:041301CrossRefGoogle Scholar
  3. 3.
    McCluskey MD, Jokela SJ (2009) J Appl Phys 106:071101CrossRefGoogle Scholar
  4. 4.
    Chowdhury F, Hasan SMF, Alam MS (2012) Turk J Phys 36:1Google Scholar
  5. 5.
    Nithya N, Radhakrishnan SR (2012) Appl Sci Res 3:4041Google Scholar
  6. 6.
    Kyoungwon K, Debnath PC, Lee DH (2011) Nanoscale Res Lett 6:1Google Scholar
  7. 7.
    Benramache S, Chabane F, Benhaoua B (2013) J Semicond 34:023001CrossRefGoogle Scholar
  8. 8.
    Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Cantwell G (2002) Appl Phys Lett 81:1830CrossRefGoogle Scholar
  9. 9.
    Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A (1997) Jpn J Appl Phys 236:L1453CrossRefGoogle Scholar
  10. 10.
    Ye ZZ, Lu CG, Chen HH, Zhang YZ, Wang L, Zhao BH, Huang JY (2003) J Cryst Growth 253:258CrossRefGoogle Scholar
  11. 11.
    Vines L, Monakhov EV, Schifano R, Mtangi W, Auret FD, Svensson BG (2010) J Appl Phys 107(10):103707CrossRefGoogle Scholar
  12. 12.
    Han NS, Shim HS, Seo JH, Kim SY, Park SM, Song JK (2010) J Appl Phys 107:084306CrossRefGoogle Scholar
  13. 13.
    Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552CrossRefGoogle Scholar
  14. 14.
    Van de Walle CG (2000) Phys Rev Lett 85:1012CrossRefGoogle Scholar
  15. 15.
    Thomas DG, Lander JJ (1956) J Chem Phys 25(6):1136CrossRefGoogle Scholar
  16. 16.
    Ismail RA, Al-Jawad SMH, Hussein N (2014) Appl Phys A 117:1977CrossRefGoogle Scholar
  17. 17.
    Bouanane I, Kabir A, Boulainine D, Zerkout S, Schmerber G, Boudjema B (2016) J Electron Mater 45:3307CrossRefGoogle Scholar
  18. 18.
    Stambolova I, Blaskov V, Shipochka M, Vassilev S, Dushkin C, Dimitriev Y (2010) Mater Chem Phys 121:447CrossRefGoogle Scholar
  19. 19.
    Subramanian M, Tanemura M, Hihara T, Ganesan V, Soga T, Jimbo T (2010) Chem Phys Lett 487:97CrossRefGoogle Scholar
  20. 20.
    Rao TP, Santhoshkumar MC (2009) Appl Surf Sci 255:7212CrossRefGoogle Scholar
  21. 21.
    Dennis B (2000) Elements of X-ray Diffraction, 3rd edn. Prentice-Hall International, Upper Saddle RiverGoogle Scholar
  22. 22.
    Adachi H, Tsukada M, Satoko C (1978) J Phys Soc Jpn 45:875CrossRefGoogle Scholar
  23. 23.
    Zhang XY, Chen ZW, Qi YP, Feng Y, Zhao L, Qi L, Ma MZ, Liu RP, Wang WK (2007) Chin Phys Lett 24:1032CrossRefGoogle Scholar
  24. 24.
    Rusu DL, Rusu GG, Luca D (2011) Act Phys Polon 119:850CrossRefGoogle Scholar
  25. 25.
    Johnson WA, Mehl PA (1939) Trans AIME 135:416Google Scholar
  26. 26.
    Kolmogorov AN (1937) Izv Akad Nauk SSSR, Ser Fiz 1:335Google Scholar
  27. 27.
    Suvorova NA, Usov IO, Stan L, DePaula RF, Dattelbaum AM, Jia QX, Suvorova AA (2008) Appl Phys Lett 92:141911CrossRefGoogle Scholar
  28. 28.
    Caglar M, Caglar Y, Ilicani S (2006) J Optoelectron Adv Mater 8:1410Google Scholar
  29. 29.
    Cheng WX, Ding AL, Zheng XS, Qiu PS, He XY (2009) J Phys.: Confer Ser 152:012036Google Scholar
  30. 30.
    Ko HJ, Chen YF, Zhu Z, Yao T, Kobayashi I, Uchiki H (2000) Appl Phys Lett 76:1905CrossRefGoogle Scholar
  31. 31.
    Lee JH (2010) Electron Mater Lett 6:159Google Scholar
  32. 32.
    Ahn HA, Kim YY, Kim DC, Mohanta SK, Cho HK (2009) J Appl Phys 105:013502CrossRefGoogle Scholar
  33. 33.
    Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA (1996) Appl Phys Lett 15:403CrossRefGoogle Scholar
  34. 34.
    Zwingel D (1972) J Lumin 5:385CrossRefGoogle Scholar
  35. 35.
    Dijken AV, Meulenkamp EA, Vanmaekelbergh DL, Meijerink A (2000) J Phys Chem B 104:1715CrossRefGoogle Scholar
  36. 36.
    Djurišić AB, Leung YH, Tam KH, Ding L, Ge WK, Chen HY, Gwo S (2006) Appl Phys Lett 88:103107CrossRefGoogle Scholar
  37. 37.
    Lavrov EV, Weber J, Van Börrnert F, de Walle CG, Helbig R (2002) Phys Rev B 66:165205CrossRefGoogle Scholar
  38. 38.
    Pollock CR (1986) J Lumin 35:65CrossRefGoogle Scholar
  39. 39.
    Manzano CV, Alegre D, Caballero-Calero O, Alèn B, Martín-González MS (2011) J Appl Phys 110:043538CrossRefGoogle Scholar
  40. 40.
    Yang Y, Yan H, Fu Z, Yang B, Xia L, Xu Y, Zuo J, Li F (2006) Solid State Commun 138:521CrossRefGoogle Scholar
  41. 41.
    Look DC, Hemsky JW, Sizelove JR (1999) Phys Rev Lett 82:2552CrossRefGoogle Scholar
  42. 42.
    Tomlins GW, Routbort JL, Mason TO (2000) J Appl Phys Rev 87:117CrossRefGoogle Scholar
  43. 43.
    Janotti A (2005) Appl Phys Lett 87:122102CrossRefGoogle Scholar
  44. 44.
    Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501CrossRefGoogle Scholar
  45. 45.
    Liu L, Mei Z, Tang A, Azarov A, Kuznetsov A, Xue QK, Du X (2016) Phys Rev B 93:235305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. Kabir
    • 1
    Email author
  • I. Bouanane
    • 1
  • D. Boulainine
    • 1
  • S. Zerkout
    • 2
  • G. Schmerber
    • 3
  • B. Boudjema
    • 1
  1. 1.Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), Faculté des SciencesSkikdaAlgeria
  2. 2.LCCUniversité des Frères MentouriConstantineAlgeria
  3. 3.IPCMS, UMR 7504 CNRS-UdSStrasbourg Cedex 2France

Personalised recommendations