, Volume 11, Issue 2, pp 843–855 | Cite as

The Effect of Heat Treatment on Optical Properties of Copper (II) Phthalocyanine Tetrasulfonic Acid Tetrasodium Salt (CuPcTs) Organic Thin Films

  • Nada K. AbbasEmail author
  • A. F. Abdulameer
  • Ruaa M. Ali
  • Shaimaa M. Alwash
Original Paper


Copper (II) phthalocyanine Tetrasulfonic Acid Tetrasodium Salt (CuPcTs) thin films have been prepared using a simple spin coating method on glass substrates. Thin films (100 ± 5 nm thickness) annealed at temperatures of (100, 150 and 200) C for one hour. The optical properties of thin CuPcTs films have been investigated in the spectral range of (300-900) nm by using the (UV-Vis) spectrophotometer. The annealed film at 100 C shows the highest absorbance whereas, the lowest was at the room temperature. All films have identical absorption coefficient patterns, α in the absorption region revealed direct transition. Analysis of α as well as the dielectric constants εi and εr reveal two absorption peaks in mentioned spectral region. The results showed that the optical band gaps depended on the temperature. The film annealed at 100 C has the lowest optical energy gap. FTIR measurements were tested in the infrared range of (400-4000) cm− 1to evaluate the position and bonds of CuPcTs as a comparison with H2Pc as a reference. Photoluminescence spectroscopy was applied to improve the results of (UV-Vis) measurements and get more exact value of optical energy gap. The energy band gaps have been estimated as (1.83 ± 0.05) and (3.18 ± 0.04) eV for Q and B bands respectively. In this work, the Capacitive-Resistive temperature sensor has been fabricated. The sensor shows response to variation of temperature in the range of (RT-200) C and the response time of ≈ 20 ± 5 Sec. For two electrodes (Aluminum and silver), our results have shown that the aluminum electrode has a higher capacitance and resistance than silver electrode depending on the different frequency values. While the silver electrode has the shortest response time.


(CuPcTs) organic thin films Spin coating X-ray diffraction Atomic Force Microscope (AFM) Field Emission Scanning Electron Microscope (FESEM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inigo AR, Xavier FP, Goldsmith GJ (1997) Copper Phthalocyanine as an efficient dopant in development of solar cells. Mater Res Bull 32(5):539CrossRefGoogle Scholar
  2. 2.
    Sharma GD, Kumar R, Shailendra KS, Roy MS (2006) Sol Energy Mater Sol Cell 90:933–943CrossRefGoogle Scholar
  3. 3.
    Abraham CV, Menon CS (2005) Electrical conductivity studied of mixed phthalocyanine thin films. Cen Eur J Phys 3(1):8–14Google Scholar
  4. 4.
    Shaji V, Mercy I, Mathew EJ, Menon CS (2002) Determination of energy gap of thin films of cadmium sulphide, copper phthalocyanine and hybrid cadmium sulphide/copper phthalocyanine from its optical studies. Mater Lett 56:1078–1083CrossRefGoogle Scholar
  5. 5.
    Ambily S, Menon CS (1999) The effect of growth parameters on the electrical, optical and structural properties of copper phthalocyanine thin films. Thin Solid Films 347:284–288CrossRefGoogle Scholar
  6. 6.
    Tedesco AC, Rotta JCG, Lunardi CN (2003) Curr Org Chem 7187Google Scholar
  7. 7.
    Qihao W, Shihong Y (2006) Urban air pollution patterns, land use and thermal landscape: an examination of the linkage using GIS. Environ Monit Assess 117:463–489CrossRefGoogle Scholar
  8. 8.
    Schwieger T, Peisert H, Golden M, Knupfer M, Fink J (2002) Electronic structure of the organic semiconductor copper phthalocyanine and K-CuPc studied using photoemission spectroscopy. Phys Rev B 66:155207CrossRefGoogle Scholar
  9. 9.
    Moiz SA, Karimov KhS, Gohar ND (2004) Orange dye thin film resistive hygrometers. Eurasian Chemico-Technol J 6:201Google Scholar
  10. 10.
    Li Y, Yang MJ (2002) Bilayer thin film humidity sensors based on sodium polystyrenesulfonate and subsituated polyacetylene. Sens Actuators B 87:184CrossRefGoogle Scholar
  11. 11.
    Bondavalli P, Legagneux P, Pribat D (2009) Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens Actuators B: Chem 140:304CrossRefGoogle Scholar
  12. 12.
    Saleem M, Sayyad MH, Karimov KS, Ahmad Z, Shah M, Yaseen M, Khokhar I, Ali M (2008) Synthesis and photocapacitive studies of Cu (II) 5, 10, 15, 20-tetrakis(4 isopropylphenyl) porphyrin. J Opto-Elect Adv Mater 10:1468–1472Google Scholar
  13. 13.
    Demtröder W (2010) Experimentalphysik 3: Atome. Springer, Moleküle und FestkörperCrossRefGoogle Scholar
  14. 14.
    El-Nahass M, Abd-El-Rahman K, Farag A, Darwish A (2004) Optical characterisation of thermally evaporated nickel phthalocyanine thin films. Int J Mod Phys B 18(3):421–434CrossRefGoogle Scholar
  15. 15.
    Elliot R, Gibson AI (1974) An introduction to solid state physics and application, 1st edn. Macillian IncGoogle Scholar
  16. 16.
    Moss T (1959) Optical properties of semiconductors. London Butter Worthes Scientific PuplicationsGoogle Scholar
  17. 17.
    Engelbreacht JAA, Lombard OJ (1986) Infrared Phys 26(2):75CrossRefGoogle Scholar
  18. 18.
    El-Nahass MM, Bahabri FS, Al-Harbi R (2001) Optical properties of copper phthalocyanine(CuPc)thin films. Egypt J Sol 24:1Google Scholar
  19. 19.
    Hassan H, Ibrahim NB, Ibrahim Z (2010) Effects of annealing temperature on the optical properties and device performance of Ag / n-Si / CuPc / Ag solar cell prepared via spin coating method. Sains Malaysiana 39 (4):627–631Google Scholar
  20. 20.
    Mattes BL, Kazmarsk L (1980) Polycrystalline and amorphous thin film and devices, 2nd edn. Academic Press, CambridgeGoogle Scholar
  21. 21.
    Lackner G (2012) Carbon nanotubes in organic solar cells. Thesis submitted to University Duisburg-EssenGoogle Scholar
  22. 22.
    Hussein MT (2008) Theoretical IR spectroscopic study of copper phthalocyanine(CuPc), vol 11, no 2, pp 303–306, BaghdadGoogle Scholar
  23. 23.
    Millman J (1979) Microelectronics. Book Company Kogakusha, Murray – HillGoogle Scholar
  24. 24.
    Hayder MA, Jamil SS, Jabor AA, Nassir EH (2014) The effect of annealing on the structural and optical properties of copper oxide thin films prepared by SILAR method. Baghdad Sci J 11:2Google Scholar
  25. 25.
    Jonscher AK (1976) Alternating current diagnostics of poorly conducting thin films. Thin Solid Films 36 (1):1–20CrossRefGoogle Scholar
  26. 26.
    Moigne JL, Evevn R (1985) J Chem Phys 83:6472CrossRefGoogle Scholar
  27. 27.
    Rozenshtein VLD, Chistyakov EA (1968) Two-layer film photocapacitor based on phthalocyanine without a metal. Sov Phys-Semicond 1:1049–1050Google Scholar
  28. 28.
    Sakaguchi M, Ohta M (1986) Environmental effect on surface conductivity and αβ phase transition of zinc phthalocyanine. J Sol State Chem 61:130CrossRefGoogle Scholar
  29. 29.
    Harrison SE, Ludewig KH (1966) Conductivity and crystal phase change in phthalocyanines. J Chem Phys 45:343CrossRefGoogle Scholar
  30. 30.
    Elliott SR (1977) Philos Mag 36(6):361291CrossRefGoogle Scholar
  31. 31.
    Elliott SR (1987) A.C. Conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36 (2):36135CrossRefGoogle Scholar
  32. 32.
    Rhoderick EH (1978) Metal-semiconductor contacts (Electrical & Electronic Engineering Monographs). Clarendon Press, OxfordGoogle Scholar
  33. 33.
    Geng W, Wang R, Li X, Zou Y, Zang T, Tu J, He Y, Li N (2007) Humidity sensitive property of Li-doped mesoporous silica SBA-15. Sens Actuators B 127:323–329CrossRefGoogle Scholar
  34. 34.
    Ahmad Z, Abdullah MS, Sulaiman K (2012) Temperature-sensitive chemical cell based on Nickel (II) phthalocyanine-tetrasulfonic acid tetrasodium salt. Sens Actuators A 179:146–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nada K. Abbas
    • 1
    Email author
  • A. F. Abdulameer
    • 2
  • Ruaa M. Ali
    • 1
  • Shaimaa M. Alwash
    • 1
  1. 1.College of Science for Women, Physics DepartmentUniversity of BaghdadBaghdadIraq
  2. 2.College of Science, Physics DepartmentUniversity of BaghdadBaghdadIraq

Personalised recommendations