, Volume 11, Issue 1, pp 495–500 | Cite as

Structural and Dielectric Studies on Na2O-PbO-SiO2 Glasses

  • G. El-DamrawiEmail author
  • K. Abd-El-Nour
  • R. M. Ramadan
Original Paper


Structural studies on x Na2O.(50-x)PbO.50SiO2 glasses have been carried out by different spectroscopic techniques. FTIR, EDX, NMR and dielectric spectroscopies are applied to follow the change in glass structure in terms of bridging oxygen (BO), non-bridging oxygen (NBO), and cluster species upon adding of Na2O at expense of PbO. NBOs are formed in the silicate network upon Na2O addition, since Na2O plays the role of glass modifier. Changes in relative area of Q2 (obtained from IR analysis) and NMR chemical shift of silicon nuclei with increasing Na2O are indicative for formation of the less shielded silicate units. While in sodium rich silicate glasses, the structural role of Na2O is changed due to changing Na coordination. FTIR analysis could be used to elucidate the changes related to changing the role of Na2O. The data obtained are correlated with that obtained from EDX spectroscopy. Moreover, the role of Na2O on the process of cluster formation when it substitutes PbO is determined. NBOs only are formed in the silicate network upon Na2O addition up to 30 mol%. On the other hand, in sodium rich silicate glasses an additional type of oxygen (free oxygen O2−) is present. The free oxygen is required for sodium to form aggregated cluster, specially at high concentration of Na2O (50 mol%). An increase in Na2O concentration in Na2O-rich silicate network results in increasing Na coordination instead of breaking more silicon–oxygen bonds. Scanning electron micrographs (SEM) and EDS spectroscopy in correlation with FTIR results confirm the presence of Na cluster species. The effect of clusters formation on AC conductivity was discussed according to jump relaxation model. Some parameters related to AC conductivity are found to be affected by the presence of cluster species in the glass network.


Dielectric FTIR Silicate glasse Sodium and clusters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warren BE, Biscoe J (1938) J Am Ceram Soc 21:287CrossRefGoogle Scholar
  2. 2.
    Nesbitt HW, Bancroft GM, Henderson GS, Ho R, Dalby KN, Huang Y, Yan Z (2011) J Non-Cryst Solids 357:170–180CrossRefGoogle Scholar
  3. 3.
    Greaves GN (1985) J Non-Cryst Solids 71:202CrossRefGoogle Scholar
  4. 4.
    Greaves GN, Fontaine A, Lagarde P, Raoux D, Gurman SJ (1981) Nature 293:611CrossRefGoogle Scholar
  5. 5.
    Meyer A, Horback J, Kob W, Kargl F, Schober H (2004) Phys Rev Lett 93:027801CrossRefGoogle Scholar
  6. 6.
    Nesbitt HW, Bancroft GM, Davidson R, McIntyre NS, Pratt AR (2004) Am Mineral 89:878CrossRefGoogle Scholar
  7. 7.
    Nesbitt HW, Dalby KN (2007) J Can Chem 85:782CrossRefGoogle Scholar
  8. 8.
    Brawer SA, Whiht WBJ (1975) Chem Phys 63:2421Google Scholar
  9. 9.
    Dupree R, Holland D, Williams DS (1986) J Non-Cryst Solids 81:185–200CrossRefGoogle Scholar
  10. 10.
    Zachariasen WH (1932) J Am Chem Soc 54:3841–3851CrossRefGoogle Scholar
  11. 11.
    Zielniok D, Cramer C, Eckert H (2007) Chem Mater 19(13):3162–3170CrossRefGoogle Scholar
  12. 12.
    Bastow TJ, Dirken PJ, Smith ME (1996) J Phys Chem 100(47):18539–18545CrossRefGoogle Scholar
  13. 13.
    Pant AK, Cruickshank DWJ (1968) Acta Crystallogr B24:13CrossRefGoogle Scholar
  14. 14.
    Nesbitt HW, Bancroft GM, Davidson R, McIntyre NS, Pratt AR (2004) Am Mineral 89:878CrossRefGoogle Scholar
  15. 15.
    Furukawa T, Brawer SA, White WB (1978) J Mater Sci 13:268CrossRefGoogle Scholar
  16. 16.
    Merzbacher CI, White WB (1991) J Non-Cryst Solids 130:18CrossRefGoogle Scholar
  17. 17.
    Husung RD, Doremus RH (1990) J Mater Res 5(10):2209CrossRefGoogle Scholar
  18. 18.
    Dunken H, Doremus RH (1987) J Non-Cryst Solids 92:61CrossRefGoogle Scholar
  19. 19.
    Martin SW (1989) Mater Chem Phys 23:225CrossRefGoogle Scholar
  20. 20.
    Brinkmann D (1992) Prog NMR Spectrosc 24:527CrossRefGoogle Scholar
  21. 21.
    Angell CA (1985) Solid State Ionics 18(/19):72Google Scholar
  22. 22.
    Puschel R. Diplomarbit, MunsterGoogle Scholar
  23. 23.
    Funke F (1992) Prog Solid State Chem 22:111–195CrossRefGoogle Scholar
  24. 24.
    Kloidt T (1992) Ph.D. Thesis, Münster UnivGoogle Scholar
  25. 25.
    Schiraldi A (1978) Electrochim Acta 23:1039CrossRefGoogle Scholar
  26. 26.
    Wesolowski P, Jakubowski W, Nowinski JL (1989) Phys Stat Sol (A) 115:81CrossRefGoogle Scholar
  27. 27.
    Hill R, Dissado MLA (1988) Solid State Ionics 26:29CrossRefGoogle Scholar
  28. 28.
    Hill NE, Vaughan WE, Price AH, Davies M (1969) Dielectric properties and molecular behavior. Van Nostrand, LondonGoogle Scholar
  29. 29.
    Bishai AM, Ward AAM, Ghoneim AM, Younan AF (2003) Int J Polym Mater 2:31CrossRefGoogle Scholar
  30. 30.
    Corezzi S, Capaccioli S, Gallone Lucchesi GM, Rolla PA (1999) J Phys Condens Matter 11:10297–10314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Glass Research Group, Physics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Microwave and Dielectric Department, Physics DivisionNational Research CenterGizaEgypt

Personalised recommendations