, Volume 11, Issue 1, pp 301–311 | Cite as

Removal of Iron from Solar Grade Silicon (SoG-Si) Cutting Slurry Waste by Ultrasound-Assisted Leaching with Dilute Sulfuric Acid

  • Yang Liu
  • Pengfei XingEmail author
  • Jia Liu
  • Jian Kong
  • Xinghong Du
  • Bo Gao
  • Xuetao Luo
Original Paper


Recovering silicon from hazardous solar grade silicon (SoG-Si) cutting slurry waste generated in silicon wafer production is of great significance, but it is distinctly important to remove iron first. Dilute sulfuric acid with assistance of ultrasound was used to remove iron from SoG-Si cutting slurry waste in this study. The occurrence state of iron in the SoG-Si cutting slurry waste were analyzed. Effects of ultrasound power, ultrasound frequency, liquid-solid ratio, acid concentration and reaction temperature on the iron leaching ratio were studied. Conventional leaching (CL) and ultrasound-assisted leaching (UAL) were compared by the leaching ratio, XRD, particle sizes and morphologies. It showed that ultrasound could disintegrate aggregations and disperse aggregated particles more efficiently than CL, and accelerate leaching ratio about 7.84%, and shorten leaching time as much as 50% at 70. Kinetics analysis showed that CL reaction follows classical shrinking core model and rate-controlling step is chemical reaction. However, the UAL reaction follows shrinking unreacted core model and rate-controlling step is chemical reaction within 20 min and converts to internal diffusion after 20 min. After leaching leached residues can be considered as precious silicon source for solar cells, and filtered leaching solutions were fully recycled.


Iron Solar grade silicon (SoG-Si) cutting slurry waste Ultrasound-assisted Leaching Dilute sulfuric acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the State Key Program of National Natural Science Foundation of China (Grant No.51334004), the National Natural Science Foundation of China (Grant No.51074043) and the Fundamental Research Funds for the Central University (Grant No.N120409004).


  1. 1.
    Xing PF, Zhao PY, Guo J, Liu Y, Li F, Tu GF (2011) Mater Rev 25:75–80Google Scholar
  2. 2.
    Woditsch P, Koch W (2002) Sol Energy Mater Sol Cells 72:11–26CrossRefGoogle Scholar
  3. 3.
    Tsai TH (2011) J Hazard Mater 189:526–530CrossRefGoogle Scholar
  4. 4.
    Hariharan AV, Ravi J (2010) U.S. Patent: 20100032630Google Scholar
  5. 5.
    Wang TY, Lin YC, Tai CY, Fei CMC, Tseng Y, Lan CW (2009) Progress in Photovoltaics: Res Appl 17(3):155–163Google Scholar
  6. 6.
    Miki T, Morita K, Sano N (1997) Metall and Mater Trans B 28(5):861–867CrossRefGoogle Scholar
  7. 7.
    Kurobe K, Miura M, Matsunami H (2000) Technical Report of Ieice Sdm 100:115–120Google Scholar
  8. 8.
    Sergiienko SA, Pogorelov BV, Daniliuk VB (2014) Sep Purif Technol 133(36):16–21CrossRefGoogle Scholar
  9. 9.
    Tsai TH, Huang J (2009) J Taiwan Inst Chem Eng 40(1):1–5CrossRefGoogle Scholar
  10. 10.
    Li DG, Xing PF, Zhuang YX, Li F, Tu GF (2014) Trans Nonferrous Metals Soc China 24 (4):1237–1241CrossRefGoogle Scholar
  11. 11.
    Wang TY, Lin YC, Tai CY, Sivakumar R, Rai DK, Lan CW (2008) J Cryst Growth 310 (15):3403–3406CrossRefGoogle Scholar
  12. 12.
    Wang F, Zhang YM, Huang J, Liu T, Wang Y, Yang X, Zhao J (2013) Chinese J Rare Metals 32:57CrossRefGoogle Scholar
  13. 13.
    Zhao J, Zhang YM, Huang J, Liu T, Wang F, Liu J (2013) Chinese J Rare Metals 37:446Google Scholar
  14. 14.
    Yuan YZ, Zhang YM, Liu T, Chen TJ (2017) RSC Adv 7:1387–1935CrossRefGoogle Scholar
  15. 15.
    Yebra MC, Moreno-Cid A (2002) J Anal At Spectrom 17(17): 1425–1428CrossRefGoogle Scholar
  16. 16.
    Saterlay AJ, Wilkins SJ, Compton RG (2001) Green Chem 3(4):149–155CrossRefGoogle Scholar
  17. 17.
    Rovner LH, Hopkins GR (1976) Nuclear Technol 29(3):274–302CrossRefGoogle Scholar
  18. 18.
    Hirao K, Zhou Y, Hyuga H, Ohji T, Kusano D (2001) MRS Bulletin 26(6):451–455CrossRefGoogle Scholar
  19. 19.
    Xin W, Srinivasakannan C, Duan XH, Peng JH, Yang DJ, Ju SH (2013) Sep Purif Technol 115(2):66–72CrossRefGoogle Scholar
  20. 20.
    Wu ZM (2007) Steel Rolling 27:56–58Google Scholar
  21. 21.
    Dükkanci M, Gündüz G (2006) Ultrason Sonochem 13(6):517–522CrossRefGoogle Scholar
  22. 22.
    Xia GH, Lu M, Su XL, Zhao XD (2012) Ultrason Sonochem 19(1):38–42CrossRefGoogle Scholar
  23. 23.
    Du FH, Li JS, Li XX, Zhang ZZ (2011) Ultrason Sonochem 18(1):389–393CrossRefGoogle Scholar
  24. 24.
    Mason TJ, Peters D (2002) Practical Sonochemistry 43(3):1–48Google Scholar
  25. 25.
    Chang J, Zhang ED, Zhang LB, Peng JH, Zhou JW, Srinivasakannan C, Yang CJ (2017) Ultrason Sonochem 34:222–231CrossRefGoogle Scholar
  26. 26.
    Gharabaghi M, Irannajad M, Azadmehr A (2013) Chem Eng Res Des 91(2):325–331CrossRefGoogle Scholar
  27. 27.
    Lasheen AT, Hazek NM, Helal SA (2009) Hydrometallurgy 98(3-4):314–317CrossRefGoogle Scholar
  28. 28.
    Zhao Z, Yan L, Li H (2011) Int J Refract Met Hard Mater 29(2):289–291CrossRefGoogle Scholar
  29. 29.
    Zhang YJ, Li XH, Pan LP, Liang XY, Li XP (2010) Hydrometallurgy 100(3-4):172–176CrossRefGoogle Scholar
  30. 30.
    Guskos N, Papadopoulos GJ, Likodimos V, Patapis S, Yarmis D, Przepiera A, Przepiera K, Majszczyk J, Typek J, Wabia M, Aidinis K, Drazek Z (2002) Mater Res Bull 37(6):1051–1061CrossRefGoogle Scholar
  31. 31.
    Zheng YJ, Gong ZQ, Chen BZ, Liu LH (2003) Trans Nonferrous Metals Soc China 13(3):690–694Google Scholar
  32. 32.
    Tavani EL, Lacourn A (2001) Mater Chem Phys 72(3):380–386CrossRefGoogle Scholar
  33. 33.
    Huang PH, Deng SG, Zhang ZY, Wang XL, Chen XD, Yang XS, Yang L (2015) Thermochim Acta 620:18–27CrossRefGoogle Scholar
  34. 34.
    Šubrt J, Hanousek F, Zapletal V, Štěpánková H (1982) J Mater Sci 17(1):215–219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yang Liu
    • 1
  • Pengfei Xing
    • 1
    Email author
  • Jia Liu
    • 1
  • Jian Kong
    • 1
  • Xinghong Du
    • 1
  • Bo Gao
    • 1
  • Xuetao Luo
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China
  2. 2.Department of Material Science and EngineeringXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations