Advertisement

Silicon

, Volume 11, Issue 1, pp 277–286 | Cite as

First Principle Study of Doped Graphene for FET Applications

  • Vadthiya NarendarEmail author
  • S. K. Gupta
  • Shikhar Saxena
Original Paper
  • 80 Downloads

Abstract

The electronic industry using silicon complementary metal-oxide-semiconductor (CMOS) technology is the leading contender in the market since five decades. Nowadays, silicon CMOS technology is reached to its fundamental limits (physical and geometrical), which is the major roadblock for upcoming technological nodes. As an alternative solution, two-dimensional (2D) materials are in great demand. Graphene is the first 2D material being studied and it is also known as “miracle-material” due to its incredible physical properties. This paper explores the current status of graphene transistor as a potential supplement to the silicon CMOS technology. The absence of an energy bandgap in graphene results in severe shortcomings for logic applications. Various techniques to engineer the bandgap in graphene field-effect transistors (FETs) have been discussed. The use of dopant atoms in graphene and its effect on drain current is studied. The current-voltage characteristics of prototype devices are determined by the first-principles quantum transport calculations. The graphene nanoribbon (GNR) FET and dual-gate (DG) FET structures have been designed and simulated using QuantumWise ATK. A bandgap opening technique in bilayer graphene is proposed and analysed for FET applications as a potential replacement for silicon transistors.

Keywords

Bilayer graphene Fieled Effect Transistor (FET) Density functional theory (DFT) Nano-ribbions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geim AK, Novoselov KS (2007) Nature Mater 6:183–191CrossRefGoogle Scholar
  2. 2.
    Geim AK (2009) Science 324(5934):1530–1534CrossRefGoogle Scholar
  3. 3.
    Chenyun P, Naeemi A (2016) IEEE Electron Device Letters 37(4):508–511CrossRefGoogle Scholar
  4. 4.
    Nikonov DE, Young IA (2015) IEEE J Exploratory Solid-State Comput Devices Circuits 1(1):3–11CrossRefGoogle Scholar
  5. 5.
    Soumya J, Dutta AK (2015) IEEE Trans Electron Devices 62(12):4313–432CrossRefGoogle Scholar
  6. 6.
    Liao W, Zhao H, Ouyang G, Chen K-Q, Zhou G (2012) Appl Phys Lett 100:153112CrossRefGoogle Scholar
  7. 7.
    Liao WH, Zhou BH, Wang HY, Zhou GH (2010) Eur Phys J B 76:463–467CrossRefGoogle Scholar
  8. 8.
    Castro Neto H, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81(1):109CrossRefGoogle Scholar
  9. 9.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666–669CrossRefGoogle Scholar
  10. 10.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Science 312(5777):1191–1196CrossRefGoogle Scholar
  11. 11.
    Lin Y-M, Dimitrakopoulos C, Jenkins KA, FArmer DB, Chiu H-Y, Grill A, Avouris Ph (2010) Science 327(5966):662CrossRefGoogle Scholar
  12. 12.
    Gupta SK, Jaiswal GN (2015) Superlattice Microst 86:355– 362CrossRefGoogle Scholar
  13. 13.
    Rodriguez S, Vaziri S, Smith A, Frégonèse S, Ostling M, Lemme MC, Rusu A (2014) IEEE Trans Electron Devices 61(4):1199–1207CrossRefGoogle Scholar
  14. 14.
    Tamersit K, Djeffal F (2016) IEEE Sensors J. 16(11):4180–4191CrossRefGoogle Scholar
  15. 15.
    Chen FW, Ilatikhameneh H, Klimeck G, Rahman Tao Chu R, Chen Z (2015) SISPAD 2015Google Scholar
  16. 16.
    Fahim-AI-Fattah Md, Tawabur Rahman Md, Sherajul Islam Md, Bhuiyan AG, Abdullah Khan A (2015) (ICEEICT 2015)Google Scholar
  17. 17.
    Taylor J, Guo H, Wang J (2001) Phys Rev B 63(24):245407–1–245407-13CrossRefGoogle Scholar
  18. 18.
    Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401–1–165401-17CrossRefGoogle Scholar
  19. 19.
    Liu F, Liu X, Kang J (2011) Appl Phys Lett 98:213502CrossRefGoogle Scholar
  20. 20.
    Kechedzhi K, Falko VI, McCann E, Altshuler BL (2007) Phys Rev Lett 98:176806CrossRefGoogle Scholar
  21. 21.
    McCann E (2006) Phys Rev b (74), 161403Google Scholar
  22. 22.
    McCann E (2007) Phys Status Solidi B (244), 4112Google Scholar
  23. 23.
    Li SL, Miyazaki H, Hiura H, Liu CA, Tsukagoshi K (2011) ACS Nano 5 (500)Google Scholar
  24. 24.
    Minot ED, Yaish Y, Sazonova V, Park J-Y, Brink M, McEuen PL (2003) Phys Rev Lett 90:156401/1–156401/4CrossRefGoogle Scholar
  25. 25.
    Zhou SY, Gweon GH, Fedorov AV, First PN, De Heer WA, Lee DH, Guinea F, Neto AHC, Lanzara A (2007) Nat Mater 6(10):770–775CrossRefGoogle Scholar
  26. 26.
    Ribeiro RM, Peres NMR, Coutinho J, Briddon PR (2008) Phys Rev B 78:075442/1–075442/7CrossRefGoogle Scholar
  27. 27.
    Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97:216803CrossRefGoogle Scholar
  28. 28.
    Eazwa M (2006) Phys Rev B 73:045432CrossRefGoogle Scholar
  29. 29.
    Sun L, Li QX, Ren H, Su HB, Shi QW, Yang JL (2008) J Chem Phys 129:074704CrossRefGoogle Scholar
  30. 30.
    Lee Y-H, Kim Y-J (2012) Appl Phys Lett 101:083102CrossRefGoogle Scholar
  31. 31.
    Fu X-W, Liao Z-M, Zhou J-X, Zhou Y-B, Wu H-C, Zhang R, Jing G, Xu J, Wu X, Guo W, Yu D (2011) Appl Phys Lett 99 :213107CrossRefGoogle Scholar
  32. 32.
    Son Y-W, Cohen ML, Louie SG (2006) Nature, in pressGoogle Scholar
  33. 33.
    Lee H et al (2005) Phys. Rev. B 72:174431CrossRefGoogle Scholar
  34. 34.
    Ezawa M (2006) Phys Rev B 73:045432CrossRefGoogle Scholar
  35. 35.
    Zhou G, Duan W (2005) Nanotechnology 5:1421–1434Google Scholar
  36. 36.
    Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Phys Rev B 65:165401–1–165401-17CrossRefGoogle Scholar
  37. 37.
    Peres NMR, Klironomos FD, Tsai S-W, Santos JR, Lopes dos Santos JMB, Castro Neto AH (2007) Europhys Lett 80:67007CrossRefGoogle Scholar
  38. 38.
    Kumar A, Kumar V, Agarwal S, Basak A, Jain N, Bulusu A, Manhas SK (2014) IEEE Trans Nanotechnol 13(1):16–22CrossRefGoogle Scholar
  39. 39.
    Echtermeyer TJ et al (2007) Eur Phys J -Spec Top 148:19–26CrossRefGoogle Scholar
  40. 40.
    Williams JR, DiCarlo L, Marcus CM (2007) Science 317(5838):638–641CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Vadthiya Narendar
    • 1
    Email author
  • S. K. Gupta
    • 1
  • Shikhar Saxena
    • 1
  1. 1.Department of Electronics & Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations