Advertisement

Silicon

, Volume 11, Issue 1, pp 257–265 | Cite as

Linearity Distortion Analysis of Junctionless Quadruple Gate MOSFETs for Analog Applications

  • Santosh Kumar GuptaEmail author
  • Akash Singh Rawat
  • Yogesh Kumar Verma
  • Varun Mishra
Original Paper
  • 22 Downloads

Abstract

This paper examines a Junctionless quadruple gate (JLQG) MOSFET for analog and linearity distortion performance by numerically calculating transconductance and its higher order derivatives (gm1, gm2and gm3), VIP2, VIP3, IIP3 and IMD3. Influence of various physical device parameters: channel length, height (or width), gate oxide thickness, and channel doping concentration on the linearity distortion parameters are analyzed. From the numerical calculations it has been shown that the desirable characteristics for analog application at a given technology node are obtained for higher values of tSi, tox, and Nd. The present analysis also reveals the guidelines for the design of JLQG MOSFETs with least linearity distortion.

Keywords

Junctionless Quadruple gate MOSFETs Linearity distortion Analog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colinge JP (2004) Multi-gate SOI MOSFETs. Solid-State Electron 48:897–905CrossRefGoogle Scholar
  2. 2.
    Colinge JP (2008) FinFETs and other multi-gate transistors. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Kumar MJ, Orouji AA, Harshit D (2006) New dual-material SG nanoscale MOSFET: analytical threshold-voltage model. IEEE Trans Electron Dev 53:920–923CrossRefGoogle Scholar
  4. 4.
    Yu B, Song J, Yuan Y, Lu WY, Taur Y (2008) A unified analytic drain-current model for multiple-gate MOSFETs. IEEE Trans Electron Dev 55:2157–2163CrossRefGoogle Scholar
  5. 5.
    Chevillon N, Sallese JM, Lallement C, Pregaldiny F, Madec M, Sedlmeir J, Aghassi J (2012) Generalization of the concept of equivalent thickness and capacitances to multigate MOSFETs modelling. IEEE Trans Electron Dev 59:60–71CrossRefGoogle Scholar
  6. 6.
    Lee CW, Yun SRN, Yu CG, Park JT, Colinge JP (2007) Device design guidelines for nano-scale muGFETs. Solid-State Electron 51:505–510CrossRefGoogle Scholar
  7. 7.
    Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94(5):053511CrossRefGoogle Scholar
  8. 8.
    Colinge J-P, Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229CrossRefGoogle Scholar
  9. 9.
    Roy NCh, Gupta A, Rai S (2015) Analytical surface potential modeling and simulation of junction-less double gate (JLDG) MOSFET for ultra-low power analog/RF circuits. Microelectron J 46:916–922CrossRefGoogle Scholar
  10. 10.
    Wang T, Lou L, Lee C (2013) A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Dev Lett 34(4):478–480CrossRefGoogle Scholar
  11. 11.
    Ghosh P, Haldar S, Gupta RS, Gupta M (2012) An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC designs. IEEE Trans Electron Dev 59(12):3263–3268CrossRefGoogle Scholar
  12. 12.
    Chiang TK (2014) A novel scaling theory for fully depleted, multiple gate MOSFET, including effective number of gates (ENGs). IEEE Trans Electron Dev 61:631–633CrossRefGoogle Scholar
  13. 13.
    Samoju VR, Dubey S, Tiwari PK (2015) Quasi-3d subthreshold current and subthreshold swing Models of Dual-Metal Quadruple-Gate (DMQG) MOSFETs. J Comput Electron 14:582–592CrossRefGoogle Scholar
  14. 14.
    Chiang TK (2013) A novel quasi-3D threshold voltage model for fully depleted quadruple-gate (FDQG) MOSFETs: with equivalent number of gates (ENG) included. IEEE Trans Nanotechnol 12:1022–1025CrossRefGoogle Scholar
  15. 15.
    Chiang TK (2014) A new interface trapped charge degraded sub threshold current model for quadruple-gate MOSFETs. IEEE Trans Electron Dev 61:1611–1614CrossRefGoogle Scholar
  16. 16.
    Young KK (1989) Short channel effects in fully depleted SOI MOSFET. IEEE Trans Electron Dev 36:399CrossRefGoogle Scholar
  17. 17.
    Rawat AS, Gupta SK (2017) Potential modeling and performance analysis of junction-less quadruple gate MOSFETs for analog and RF applications. Microelectron J 66:89–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations