, Volume 11, Issue 1, pp 425–435 | Cite as

Synthesis, Characterization, Physico-Chemical and DFT Studies of Potential Organic NLO Materials: Experimental and Theoretical Combined Study

  • I. Manikandan
  • M. Venkatesh PerumalEmail author
  • K. Jayamoorthy
Original Paper


1-(2,4-difluorobenzyl)-2-(2,4-difluorophenyl)-6-methyl-1H-benzo[d]imidazole(1) and 1-(3-(tri fluoromethyl)benzyl)2-(4-(trifluoromethyl)phenyl)-6-methyl-1H-benzo[d]imidazole (2) were synthesized and characterized using FT-IR,1H-NMR,13C-NMR and mass spectral studies. UV-Vis absorption and emission spectral studies were studied in hexane and ethanol medium. In addition to these, density functional theory studies (DFT/B3LYP/6-31G(d,p)) has also been carried out to compute the relevant electronic properties of the molecules and the observed theoretical results of the non-zero dipole moments, polarizability and hyper polarizability values which show that these types of molecules are promising candidates for applications in various non-linear optical (NLO) devices because of their significant values of the molecular hyperpolarizabilities and fine microscopic NLO behaviour. The high NLO responses of the donor-acceptor π-conjugated molecules are related to the intramolecular charge transfer excited state. The results confirmed that the synthesized benzimidazoles can act as a non-linear optical material and changing the substituents in the aldehydic phenyl ring will change the energy gap in the molecule.


Benzimidazoles DFT Organic NLO materials π-conjugated molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (733 kb)
(ZIP 733 KB)


  1. 1.
    Santos J, Mintz EA, Zehnder O, Bosshard C, Bu XR, Gunter P (2001) New class of imidazoles incorporated with thiophenevinyl conjugation pathway for robust nonlinear optical chromophores. Tetrahedron Lett 42:805–808CrossRefGoogle Scholar
  2. 2.
    Dalton LR, Harper A, Ren A, Wang F, Todorova G, Chen J, Zhang C, Lee M (1999) Polymeric electro-optic modulators: from chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics. Ind Eng Chem Res 8–33Google Scholar
  3. 3.
    Bu XR, Li H, Derveer DV, Mintz EA (1996) A novel approach to synthesis of tricyanovinylthiophene for heterocyclic imidazole nonlinear optical chromophores. Tetrahedron Lett 37:7331–7334CrossRefGoogle Scholar
  4. 4.
    Chao H, Ye BH, Zhang QL, Ji LN (1999) A luminescent pH sensor based on a diruthenium(II) complex: “off-on-off” switching via the protonation/deprotonation of an imidazole-containing ligand. Inorg Chem Commun 2:338–340CrossRefGoogle Scholar
  5. 5.
    Wu JZ, Li L, Zeng TX, Ji LN (1997) Synthesis, characterization and luminiscent DNA-binding study of a series of ruthenium complexes containing 2-arylimidazo [f] 1, 10-phenanthroline. Polyhedron 16:103–107CrossRefGoogle Scholar
  6. 6.
    Kirk KL (2006) Fluorine in medicinal chemistry: recent therapeutic application of fluorinated small molecules. J Fluor Chem 127:1013–1029CrossRefGoogle Scholar
  7. 7.
    Across EM, White KM, Moshrefzadeh RS, Francis CV (1995) Azobenzimidazole compounds and polymers for nonlinear optics. Macromolecules 28:2526–2532CrossRefGoogle Scholar
  8. 8.
    Moylan CR, Miller RD, Twieg RJ, Betterton KM, Lee VY, Matray TJ, Nguyen C (1993) Synthesis and nonlinear optical properties of donor-acceptor substituted triaryl azole derivatives. Chem Mater 5:1499–1508CrossRefGoogle Scholar
  9. 9.
    Benning RG (1995) Chromophores for second-order non-linear optic materials. J Mater Chem 5:365–378CrossRefGoogle Scholar
  10. 10.
    Krebs FC, Spanggaard H (2002) An exceptional red shift of emission maxima upon fluorine substitution. J Org Chem 67:7185–7192CrossRefGoogle Scholar
  11. 11.
    Balamurugan R, Palaniandavar M, Gopalan RS (2001) Trigonal planar copper(I) complex: synthesis, structure, and spectra of a redox pair of novel copper(II/I) complexes of tridentate bis(benzimidazol-2’-yl) ligand framework as models for electron-transfer copper proteins. Inorg Chem 40:2246–2255CrossRefGoogle Scholar
  12. 12.
    Hasegawa E, Yoneoka A, Suzuki K, Kato T, Kitazume T, Yangi K (1999) Reductive transformation of α, β-epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron 55:12957–12968CrossRefGoogle Scholar
  13. 13.
    Pujar MA, Bharamgoudar TD (1988) Cobalt(II), nickel(II) and copper(II) complexes of bidentate bibenzimidazoles. Transition Met Chem 13:423–425CrossRefGoogle Scholar
  14. 14.
    Bhandari K, Srinivas N, Marrapu VK, Verma A, Srivastava S, Gupta S (2010) Synthesis of substituted aryloxy alkyl and aryloxy aryl alkyl imidazoles as antileishmanial agents. Bioorg Med Chem Lett 20:291–293CrossRefGoogle Scholar
  15. 15.
    Lee CM, Jeong HJ, Lim ST, Sohn MH, Kim DW (2010) Synthesis of iron oxide nanoparticles with control over shape using imidazolium-based ionic liquids. ACS Appl Mater Interfaces 2:756–759CrossRefGoogle Scholar
  16. 16.
    Dmitriev VG, Gurzadyan GG, Nikoyosyan DN (1999) Handbook of nonlinear optical crystals. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Banuelos Prieto J, LopezArbeloa F, Martinez Martinez V, Arbeloa Lopez T, Lopez Arbeloa I (2004) Photophysical properties of the pyrromethene 597 dye: solvent effect. J Phys Chem A 108:5503–5508CrossRefGoogle Scholar
  18. 18.
    Hofer JE, Grabenstetter RJ, Wiig EO (1950) The fluorescence of cyanine and related dyes in the Monomeric State. J Am Chem Soc 72:203–209CrossRefGoogle Scholar
  19. 19.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian P, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  20. 20.
    Wagener M, Sadowsky J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117:7769–7775CrossRefGoogle Scholar
  21. 21.
    Crasta V, Ravindrachary V, Bharantri RF, Gonsalves R (2004) Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one. J Cryst Growth 267:129–133CrossRefGoogle Scholar
  22. 22.
    Wang P, Zhu P, Wu W, Kang H, Ye C (1999) Design of novel nonlinear optical chromophores with multiple substitutions. Phys Chem Chem Phys 1:3519–3525CrossRefGoogle Scholar
  23. 23.
    Tayyari SF, Tabrizi MZ, Laleh S, Tekyeh ZM, Rahemi H, Wang YA (2007) Structure and vibrational assignment of 3,4-diacetyl-2,5-hexanedione. A density functional theoretical study. J Mol Struct 827:176–187CrossRefGoogle Scholar
  24. 24.
    Yang Y, Zhang WJ, Gao XM (2006) Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CH OHNO complexes. Int J Quant Chem 106:1199–1202CrossRefGoogle Scholar
  25. 25.
    Marshal J (1988) Ind J Phys 7213:659–671Google Scholar
  26. 26.
    Szafran M, Komasa A, Adamska EB (2007) Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J Mol Struct 827:101–107CrossRefGoogle Scholar
  27. 27.
    Wang G, Liang F, Xie Z, Su G, Wang L, Jing X, Wang F (2002) Novel bis(8-hydroxyquinoline)phenolatoaluminum complexes for organic light-emitting diodes. Synth Met 131:1–5CrossRefGoogle Scholar
  28. 28.
    Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • I. Manikandan
    • 1
  • M. Venkatesh Perumal
    • 2
    Email author
  • K. Jayamoorthy
    • 3
  1. 1.Department of ChemistryBannari Amman Institute of TechnologySathyamangalamIndia
  2. 2.Department of ChemistryRamco Institute of TechnologyRajapalayamIndia
  3. 3.Department of ChemistrySt. Joseph’s College of EngineeringChennaiIndia

Personalised recommendations