Silicon

pp 1–9 | Cite as

A Study on the Electronic Properties of SiO x N y /p-Si Interface

  • A. Akkaya
  • B. Boyarbay
  • H. Çetin
  • K. Yıldızlı
  • E. Ayyıldız
Original Paper
  • 5 Downloads

Abstract

In this study, we investigated the electrical properties of Sn/SiO x N y /p-Si metal-insulator layer-semiconductor (MIS) structure. Silicon oxynitride (SiO x N y ) thin film was grown on chemically cleaned p-Si substrate by the plasma nitridation process. The chemical composition and surface morphology of the thin film were analyzed using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Electrical measurements of the devices (e.g. current-voltage (I-V ), capacitance-voltage (C-V ), capacitance and conductance-frequency characteristics (C-f and G-f )) were performed at room temperature. The characteristic parameters of the SiO x N y /p-Si interface such as energy position, interface state density and relaxation time constant were obtained from admittance measurements over a wide range of frequencies (from 1 to 500 kHz) for the values of the forward bias between 0.0 V ≤ V ≤ 1.1 V. The values of the interface state density and their relaxation time constant changed from 3.684 × 1013 cm− 2 eV− 1 to 3.216 × 1012 cm− 2eV− 1 and from 1.770 × 10− 5 s to 6.277 × 10− 7 s, respectively. The obtained values of the interface state density were compared to those of the oxides grown by the other techniques. The experimental results clearly show that the density and location of interface states has a significant effect on electrical characteristics of the MIS structure.

Keywords

Silicon oxynitride Metal–insulator–semiconductor structure Schottky barrier Interface states Series resistance X-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was supported by the Erciyes University Scientific Research Project Unit under Contract No: FBA-09-1073. The authors would like to thank to the Erciyes University Scientific Research Project Unit for their financial support.

References

  1. 1.
    Sobolewski MA, Helms CR (1989) Studies of barrier height mechanisms in metal silicon-nitride silicon Schottky-Barrier diodes. J Vac Sci Technol B 7(4):971–979.  https://doi.org/10.1116/1.584589 CrossRefGoogle Scholar
  2. 2.
    Ikeda A, Elnaby MA, Fujimura T, Hattori R, Kuroki Y (2001) Oxynitridation of silicon with nitrogen plasma for flash memory applications characterized by high frequency capacitance–voltage measurements. Thin Solid Films 385(1):215–219CrossRefGoogle Scholar
  3. 3.
    El-Oyoun MA, Inokuma T, Kurata Y, Hasegawa S (2003) Temperature dependence of the structural properties of amorphous silicon oxynitride layers. Solid State Electron 47(10):1669–1676CrossRefGoogle Scholar
  4. 4.
    Balland B, Glachant A (1999) Chapter 1 Silica, silicon nitride and oxynitride thin films. Instabilities Silicon Devices 3:3–144.  https://doi.org/10.1016/S1874-5903(99)80007-x CrossRefGoogle Scholar
  5. 5.
    Perera R, Ikeda A, Hattori R, Kuroki Y (2003) Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitrided in inductively coupled nitrogen plasma. Thin Solid Films 423(2):212–217CrossRefGoogle Scholar
  6. 6.
    Konofaos N, Evangelou E, Aslanoglou X, Kokkoris M, Vlastou R (2003) Dielectric properties of CVD grown siON thin films on Si for MOS microelectronic devices. Semicond Sci Tech 19(1):50CrossRefGoogle Scholar
  7. 7.
    Kim HS, Han SW, Jang WH, Cho CH, Seo KS, Oh J, Cha HY (2017) Normally-Off GaN-on-Si MISFET using PECVD SiON gate dielectric. IEEE Electron Device Lett 38(8):1090–1093CrossRefGoogle Scholar
  8. 8.
    Cheng X, Marstein ES, Haug H, Di Sabatino M (2016) Double layers of ultrathin a-Si:H and SiNx for surface passivation of n-type crystalline Si wafers. Energy Procedia 92:347–352.  https://doi.org/10.1016/j.egypro.2016.07.094 CrossRefGoogle Scholar
  9. 9.
    Walsh LA, Mohammed S, Sampat SC, Chabal YJ, Malko AV, Hinkle CL (2017) Oxide-related defects in quantum dot containing Si-rich silicon nitride films. Thin Solid Films 636:267–272.  https://doi.org/10.1016/j.tsf.2017.06.022 CrossRefGoogle Scholar
  10. 10.
    Soman A, Antony A (2017) Broad range refractive index engineering of SixNy and SiOxNy thin films and exploring their potential applications in crystalline silicon solar cells. Mater Chem Phys 197:181–191.  https://doi.org/10.1016/j.matchemphys.2017.05.035 CrossRefGoogle Scholar
  11. 11.
    Or DC, Lai P, Sin J (2003) Optimization of plasma nitridation for reliability enhancement of low-temperature gate dielectric in MOS devices. Solid State Electron 47(11):2049–2053CrossRefGoogle Scholar
  12. 12.
    Rebib F, Tomasella E, Aida S, Dubois M, Cellier J, Jacquet M (2006) Electrical behaviour of SiOxNy thin films and correlation with structural defects. Appl Surf Sci 252 (15):5607–5610.  https://doi.org/10.1016/j.apsusc.2005.12.129 CrossRefGoogle Scholar
  13. 13.
    Ma Y, Yasuda T, Lucovsky G (1993) Fixed and trapped charges at oxide–nitride–oxide heterostructure interfaces formed by remote plasma enhanced chemical vapor deposition. J Vac Sci Technol B: Microelectron Nanometer Struc Process Meas Phenom 11(4):1533–1540CrossRefGoogle Scholar
  14. 14.
    Mönch W (2001) Semiconductor surfaces and ınterfaces. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Altındal S, Kanbur H, Yucedag I, Tataroglu A (2008) On the energy distribution of interface states and their relaxation time and capture cross section profiles in Al/SiO2/P-Si (MIS) Schottky diodes. Microelectron Eng 85(4):1495–1501.  https://doi.org/10.1016/j.mee.2008.02.001 CrossRefGoogle Scholar
  16. 16.
    Çetin H, Ayyildiz E, Türüt A (2005) Barrier height enhancement and stability of the Au/n-InP Schottky barrier diodes oxidized by absorbed water vapor. J Vac Sci Technol B: Microelectron Nanometer Struc 23(3):2436.  https://doi.org/10.1116/1.2126675 CrossRefGoogle Scholar
  17. 17.
    Kar S, Varma S (1985) Determination of silicon-silicon dioxide interface state properties from admittance measurements under illumination. J Appl Phys 58(11):4256–4266CrossRefGoogle Scholar
  18. 18.
    Terman LM (1962) An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron 5(5):285–299CrossRefGoogle Scholar
  19. 19.
    Cowley A, Sze S (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36 (10):3212–3220CrossRefGoogle Scholar
  20. 20.
    Card HC, Rhoderick EH (1971) Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D: Appl Phys 4(10):1589CrossRefGoogle Scholar
  21. 21.
    Chattopadhyay P, Raychaudhuri B (1993) Frequency-dependence of forward capacitance voltage characteristics of Schottky-barrier diodes. Solid State Electron 36(4):605–610.  https://doi.org/10.1016/0038-1101(93)90272-R CrossRefGoogle Scholar
  22. 22.
    Tseng H-H, Wu C-Y (1987) A simple interfacial-layer model for the nonideal IV and CV characteristics of the Schottky-barrier diode. Solid State Electron 30(4):383–390CrossRefGoogle Scholar
  23. 23.
    Pandey S, Kal S (1998) A simple approach to the capacitance technique for determination of interface state density of a metal-semiconductor contact. Solid State Electron 42(3):943–949.  https://doi.org/10.1016/S0038-1101(97)00267-0 CrossRefGoogle Scholar
  24. 24.
    Szatkowski J, Sierański K (1992) Simple interface-layer model for the nonideal characteristics of the Schottky-barrier diode. Solid State Electron 35(4):1013–1015CrossRefGoogle Scholar
  25. 25.
    Cova P, Singh A, Masut RA (1997) A self-consistent technique for the analysis of the temperature dependence of current-voltage and capacitance-voltage characteristics of a tunnel metal-insulator-semiconductor structure. J Appl Phys 82(10):5217–5226.  https://doi.org/10.1063/1.366386 CrossRefGoogle Scholar
  26. 26.
    Morgan WE, Van Wazer JR (1973) Binding energy shifts in the x-ray photoelectron spectra of a series of related Group IVA compounds. J Phys Chem 77(4):964–969CrossRefGoogle Scholar
  27. 27.
    National Institute of Standards and Technology (2012) http://srdata.nist.gov/xps/. Accessed 2017
  28. 28.
    Cubaynes F, Venezia V, Van der Marel C, Snijders J, Everaert J, Shi X, Rothschild A, Schaekers M (2005) Plasma-nitrided silicon-rich oxide as an extension to ultrathin nitrided oxide gate dielectrics. Appl Phys Lett 86(17):172903CrossRefGoogle Scholar
  29. 29.
    Du H, Tressler RE, Spear KE (1989) Thermodynamics of the Si-N-O system and kinetic modeling of oxidation of Si3N4. J Electrochem Soc 136(11):3210–3215CrossRefGoogle Scholar
  30. 30.
    Dupuie JL, Gulari E, Terry F (1992) The low temperature catalyzed chemical vapor deposition and characterization of silicon nitride thin films. J Electrochem Soc 139(4):1151–1159CrossRefGoogle Scholar
  31. 31.
    Kohli S, Theil JA, Dippo PC, Ahrenkiel RK, Rithner CD, Dorhout PK (2005) Chemical, optical, vibrational and luminescent properties of hydrogenated silicon-rich oxynitride films. Thin Solid Films 473(1):89–97CrossRefGoogle Scholar
  32. 32.
    Tao Y, Lu Z, Graham MJ, Tay S (1994) X-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy study of SiO2/Si (100). J Vac Sci Technol B: Microelectron Nanometer Struc Process Meas Phenom 12(4):2500–2503CrossRefGoogle Scholar
  33. 33.
    Delfino M, Fair J, Salimian S (1992) Thermal nitridation of silicon in a cluster tool. Appl Phys Lett 60 (3):341–343CrossRefGoogle Scholar
  34. 34.
    Liao J-H, Hsieh J-Y, Lin H-J, Tang W-Y, Chiang C-L, Lo Y-S, Wu T-B, Yang L-W, Yang T, Chen K-C (2009) Physical and electrical characteristics of silicon oxynitride films with various refractive indices. J Phys D: Appl Phys 42(17):175102CrossRefGoogle Scholar
  35. 35.
    Kim YK, Lee HS, Yeom H, Ryoo D-Y, Huh S-B, Lee J-G (2004) Nitrogen bonding structure in ultrathin silicon oxynitride films on Si (100) prepared by plasma nitridation. Phys Rev B 70(16):165320CrossRefGoogle Scholar
  36. 36.
    Chang J, Green M, Donnelly V, Opila R, Eng J Jr, Sapjeta J, Silverman P, Weir B, Lu H, Gustafsson T (2000) Profiling nitrogen in ultrathin silicon oxynitrides with angle-resolved x-ray photoelectron spectroscopy. J Appl Phys 87(6):4449–4455CrossRefGoogle Scholar
  37. 37.
    Datta M, Mathieu H, Landolt D (1984) Characterization of transpassive films on nickel by sputter profiling and angle resolved AES/XPS. Appl Surf Sci 18(3):299–314CrossRefGoogle Scholar
  38. 38.
    Aygun G, Atanassova E, Alacakir A, Ozyuzer L, Turan R (2004) Oxidation of Si surface by a pulsed Nd: YAG laser. J Phys D: Appl Phys 37(11):1569CrossRefGoogle Scholar
  39. 39.
    Lai Y-S, Chen K-J, Chen J-S (2002) Effects of plasma prenitridation and postdeposition annealing on the structural and dielectric characteristics of the Ta2O5/Si system. J Electrochem Soc 149(4):F63–F68CrossRefGoogle Scholar
  40. 40.
    Pashutski A, Folman M (1989) Low temperature XPS studies of NO and N2O adsorption on Al (100). Surf Sci 216(3):395–408CrossRefGoogle Scholar
  41. 41.
    Song YP, Vanmeirhaeghe RL, Laflere WH, Cardon F (1986) On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/P-Inp Schottky barriers. Solid State Electron 29(3):633–638.  https://doi.org/10.1016/0038-1101(86)90145-0 CrossRefGoogle Scholar
  42. 42.
    Tung RT (1992) Electron-transport at metal-semiconductor interfaces - general-theory. Phys Rev B 45 (23):13509–13523.  https://doi.org/10.1103/PhysRevB.45.13509 CrossRefGoogle Scholar
  43. 43.
    Cheung SK, Cheung NW (1986) Extraction of schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49(2):85–87.  https://doi.org/10.1063/1.97359 CrossRefGoogle Scholar
  44. 44.
    Çetin H, Şahin B, Ayyıldız E, Türüt A (2004) The barrier-height inhomogeneity in identically prepared H-terminated Ti/p-Si Schottky barrier diodes. Semicond Sci Tech 19(6):1113–1116CrossRefGoogle Scholar
  45. 45.
    Werner JH (1988) Schottky-barrier and Pn-junction I/V plots - small-signal evaluation. Appl Phys a-Mater 47(3):291–300.  https://doi.org/10.1007/Bf00615935 CrossRefGoogle Scholar
  46. 46.
    Wittmer M, Freeouf JL (1992) Ideal Schottky diodes on passivated silicon. Phys Rev Lett 69(18):2701–2704.  https://doi.org/10.1103/PhysRevLett.69.2701 CrossRefGoogle Scholar
  47. 47.
    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts. Clarendon, OxfordGoogle Scholar
  48. 48.
    Nicollian EH, Goetzberger A (1967) The Si-SiO2 ınterface: electrical properties as determined by the metal-ınsulator-silicon conductance technique. Bell Syst Tech J 46(3):1055–1133CrossRefGoogle Scholar
  49. 49.
    Depas M, Van Meirhaeghe RL, Laflère WH, Cardon F (1994) Electrical characteristics of Al/SiO2/n-Si tunnel diodes with an oxide layer grown by rapid thermal oxidation. Solid State Electron 37(3):433–441.  https://doi.org/10.1016/0038-1101(94)90009-4 CrossRefGoogle Scholar
  50. 50.
    Nicollian EH, Brews JR (1982) Mos (Metal Oxide Semiconductor) physics and technology, vol 1. Wiley-Interscience, New YorkGoogle Scholar
  51. 51.
    Novkovski N (2002) Breakdown and generation of interface states in oxynitride thin films on silicon. Semicond Sci Tech 17(2):93CrossRefGoogle Scholar
  52. 52.
    Ikeda A, Elnaby MA, Hattori R, Kuroki Y (2001) Effect of nitrogen plasma conditions on electrical properties of silicon oxynitrided thin films for flash memory applications. Thin Solid Films 386(1):111–116CrossRefGoogle Scholar
  53. 53.
    Albertin K, Pereyra I (2005) Study of PECVD SiOx N y films dielectric properties with different nitrogen concentration utilizing MOS capacitors. Microelectron Eng 77(2):144–149CrossRefGoogle Scholar
  54. 54.
    Hernandez MJ, Garrido J, Martinez J, Piqueras J (1997) Compositional and electrical properties of ECR-CVD silicon oxynitrides. Semicond Sci Tech 12(4):927CrossRefGoogle Scholar
  55. 55.
    Ma Y, Lucovsky G (1994) Deposition of single phase, homogeneous silicon oxynitride by remote plasma-enhanced chemical vapor deposition, and electrical evaluation in metal–insulator–semiconductor devices. J Vac Sci Technol B: Microelectron Nanometer Struc Process Meas Phenom 12(4):2504–2510.  https://doi.org/10.1116/1.587792 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mucur Technical Vocational Schools, Tech. Prog. DepartmentAhi Evran UniversityKırşehirTurkey
  2. 2.Faculty of Sciences, Department of PhysicsErciyes UniversityKayseriTurkey
  3. 3.Faculty of Arts and Sciences, Department of PhysicsBozok UniversityYozgatTurkey
  4. 4.Faculty of Engineering, Department of Mechanical EngineeringOndokuz Mayıs UniversitySamsunTurkey

Personalised recommendations