Silicon

pp 1–7 | Cite as

Preparation and Characterization of Oxide Glass from Sugar Cane Waste

Original Paper
  • 4 Downloads

Abstract

The main attention of the article deals with the taking out of silica from natural supply such as sugar cane bagasse. These waste materials in large quantities can produce a critical environmental problem. Hence, there is a need to adopt suitable plan to condense the waste. In the present study, all the waste materials are subjected to humidity removal with heating at 200 °C and sintered at 900 °C for 7 h. The obtained powders were examined and described by FT-IR and XRD analysis. The powder obtained from sugar cane bagasse sources was found to 100% SiO2 in tridymite and crystobalite phases. Crystalline sugarcane bagasse (SCB) was used as an alternative silica source for the synthesis of glass samples. The synthesis was studied as a function of crystalline sugarcane bagasse up to 35 mol% and the products of glass samples were characterized using a variety of analytical techniques, including X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential thermal analyzes (DTA) and UV/VIS/NIR spectroscopy.

Keywords

Silica Sugar cane bagasse Oxide glass X-ray diffraction Fourier transformation infrared spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) J Agric Food Chem 57:6305–6317CrossRefGoogle Scholar
  2. 2.
    Li X, Kondo R, Sakai K (2002) J Wood Sci 48:159–162CrossRefGoogle Scholar
  3. 3.
    Zhao H, Kwak JH, Zhang ZC, Heather M, Brown HM, Arey BW, Holladay JE (2007) Carbohydr Polym 68:235–241CrossRefGoogle Scholar
  4. 4.
    Quintero JA, Cardona CA (2009) Ind Eng Chem Res 48:6783–6788CrossRefGoogle Scholar
  5. 5.
    Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, Castro AM, Driemeier CE, Pereira N Jr, Polikarpov I (2011) Process Biochem 46:1196–1201CrossRefGoogle Scholar
  6. 6.
    Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W (2011) Biotechnol Biofuels 4:54–61CrossRefGoogle Scholar
  7. 7.
    Adsul MG, Varma AJ, Gokhale DV (2007) Green Chem 9:58–62CrossRefGoogle Scholar
  8. 8.
    Cardona CA, Quintero JA, Paz IC (2010) Bioresour Technol 101:4754–4766CrossRefGoogle Scholar
  9. 9.
    Akatov AA, Nikonov BS, Omel’yanenko BI, Stefanovskaya OI, Stefanovsky SV, Suntsov D Yu, Marra JC (2010) Glass Phys Chem 36(1):45–52CrossRefGoogle Scholar
  10. 10.
    Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Spectrochim Acta A 90:173–176CrossRefGoogle Scholar
  11. 11.
    Roopan SM, Rohit, Madhumitha G, Abdul Rahuman A, Kamaraj C, Bharathi A, Surendra TV (2013) Ind Crop Prod 43:631–635CrossRefGoogle Scholar
  12. 12.
    Roopan SM, Bharathi A, Prabhakarn A, Abdul Rahuman A, Velayutham K, Rajakumar G, Padmaja RD, Lekshmi M, Madhumitha G (2012) Spectrochim Acta A: Mol Biomol Spectrosc 98:86–90CrossRefGoogle Scholar
  13. 13.
    Vaibhav V, Vijayalakshmi U, Roopan SM (2015) Spectrochim Acta A: Mol Biomol Spectrosc 139:515–520CrossRefGoogle Scholar
  14. 14.
    Kumar V, Pandey OP, Singh K (2010) Physica B 405:204–207CrossRefGoogle Scholar
  15. 15.
    Akatov AA, Nikonov BS, Omel’yanenko BI, Stefanovsky SV, Marra JC (2009) Glass Phys Chem 35:245–259CrossRefGoogle Scholar
  16. 16.
    Kaur G, Pandey OP, Singh K (2012) J Non-Crystal Solids 358:2589–2596CrossRefGoogle Scholar
  17. 17.
    Darwish H, Gomaa MM (2006) J Mater Sci: Mater Electron 17:35–42Google Scholar
  18. 18.
    He F, Ping C, Zheng Y (2013) Phys Procedia 48:73–80CrossRefGoogle Scholar
  19. 19.
    Ramasamy V, Ponnusamy V, Sabari S, Anishia SR, Gomathi SS (2009) Indian J Pure Appl Phys 47:586–591Google Scholar
  20. 20.
    Yingliang T, Yanli S, Ping LU, Jinshu C, Wencai LIU (2015) J Wuhan Univ Technol-Mater Sci 30:51–55CrossRefGoogle Scholar
  21. 21.
    Kaur R, Singha S, Pandey OP (2013) J Molec Struct 1049:409–413CrossRefGoogle Scholar
  22. 22.
    Kamitsos EI, Karakassides MA, Chryssikos GD (1987) J Phys Chem Glasses 28:203–209Google Scholar
  23. 23.
    Yawale SS, Yawale SP, Adgaonkar CS (2000) Indian J Eng Mater Soc 7:150–153Google Scholar
  24. 24.
    Kupracz P, Karczewski J, Welenc MP, Szreder NA, Winiarski MJ, Klimczuk T, Barczynski RJ (2015) J Non-Crystal Solids 423–424:68–75CrossRefGoogle Scholar
  25. 25.
    Naresh V, Buddhudu S (2012) Ceram Int 38:2325–2332CrossRefGoogle Scholar
  26. 26.
    El-Egili K (2003) J Physica B 325:340CrossRefGoogle Scholar
  27. 27.
    El-Batal FH, Ashour AH (2003) Mater Chem Phys 77:677CrossRefGoogle Scholar
  28. 28.
    Kashif I, Ratep A (2016) Phys Chem Glasses: Eur J Glass Sci Technol B 57(2):97–103Google Scholar
  29. 29.
    Abdel-Khalek EK, Salem SHM, Farouk M, Mohamed EA, Kashif I (2011) J. Non-Crystal Solids 357:864–872CrossRefGoogle Scholar
  30. 30.
    Marrota A, Buri A (1980) Thermochim Acta 40:397–403CrossRefGoogle Scholar
  31. 31.
    Dult M, Kundu RS, Berwal N, Punia R, Kishore N (2015) J Molec Struct 1089:32–37CrossRefGoogle Scholar
  32. 32.
    Kashif I, Abd El-Maboud A, Ratep A (2014) Res Phys 4:1–5Google Scholar
  33. 33.
    Fujino S, Hwang C, Morinaga K (2004) J Am Ceram Sci 87:10–16CrossRefGoogle Scholar
  34. 34.
    Gedam RS, Ramteke DD (2012) J Rare Earths 30(8):785–789CrossRefGoogle Scholar
  35. 35.
    Reddy RR, Nazeer AY, Abdul Azeem P, Rama G (2003) J Quant Spectrosc Radiat Transf 77:149–163CrossRefGoogle Scholar
  36. 36.
    Kashif I, Ratep A, Sanad AM (2015) Opt Quant Electron 47:673–684CrossRefGoogle Scholar
  37. 37.
    Varshneya AK (1994) Fundamentals of inorganic glasses. Academic, New YorkGoogle Scholar
  38. 38.
    Kashif I, Ratep A (2015) Appl Phys A 120:1427–1434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceAL-Azhar UniversityNasr CityEgypt
  2. 2.Physics Department, Faculty of GirlsAin Shams UniversityHeliopolisEgypt

Personalised recommendations