Effect of Surface Roughness of 316 L Stainless Steel Substrate on the Morphological and Super-Hydrophobic Property of TiO2 Thin Films Coatings
- 3 Downloads
Abstract
In this study, TiO2 was coated on 316L stainless steel substrates via sol–gel/ dip coating method. The effects of surface roughness on the physical properties have been investigated. Scanning electron microscopy (FE-SEM), FTIR and X-ray diffraction (XRD) were used to investigate the morphological properties, identification of simple mixtures of organic and inorganic compounds and structure of crystal, respectively. Also, the effect of roughness on the hydrophobic property of coating measured by water contact angle. Water contact angle increased from 142.5∘ to 168.5∘ by increasing the roughness. From wettability results indicated that roughness had significant effect on the hydrophobic property of thin films.
Keywords
TiO2 Sol–gel Hydrophobic property Thin filmPreview
Unable to display preview. Download preview PDF.
References
- 1.Cheng Y T, Rodak D E (2005) Appl Phys Lett 86:144101–144103CrossRefGoogle Scholar
- 2.Zhai L, Cebeci F C, Cohen R E, Rubner M F (2004) Nano Lett 4:1349–1353CrossRefGoogle Scholar
- 3.Mahadevan L, Pomeau Y (1999) Phys Fluids 11:2449–2453CrossRefGoogle Scholar
- 4.Quéré D (2005) Nature 435(2005):1168–1169CrossRefGoogle Scholar
- 5.Tarwal N L, Patil P S (2010) Appl Surf Sci 256:7451–7456CrossRefGoogle Scholar
- 6.Feng L, Li S, Li Y, Li H, Zhang LL, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2005) Adv Mater 14:1857–1863CrossRefGoogle Scholar
- 7.Ma M, RH RH, Lowery J L (2005) Langmuir 21:5549–5554CrossRefGoogle Scholar
- 8.Sarkar D K, Farzaneh M, Paynter R W (2010) Appl Surf Sci 256:3698–3701CrossRefGoogle Scholar
- 9.Nakajima A, Hashimoto K, Watanabe T (2001) Monatsh Chem 132:31–34CrossRefGoogle Scholar
- 10.Barthlott W, Neinhuis C (1997) Planta 202:1–8CrossRefGoogle Scholar
- 11.Gao X, Jiang L (2004) Nature 432:36–42CrossRefGoogle Scholar
- 12.Qian B T, Shen Z Q (2005) Langmuir 21(2005):9007–9009CrossRefGoogle Scholar
- 13.Hikita M, Tanaka K, Nakamura T, Kajiyama T, Takahara A (2005) Langmuir 21:7299–7302CrossRefGoogle Scholar
- 14.Xie Q, Fan G, Zhao N, Guo X, Xu J, Dong J, Zhang L, Zhang Y (2004) Adv Mater 16:1830–1833CrossRefGoogle Scholar
- 15.Hata S, Kai Y, Yamanaka I, Oosaki H, Hirota K, Yamazaki S (2000) JSAE Rev 21:97–102CrossRefGoogle Scholar
- 16.Feng Z, Kaiming L, Guoliang W, Hua S, Anmin H (2004) J Cryst Growth 264:297–301CrossRefGoogle Scholar
- 17.Yu J G, Zhao X J (2001) Mater Res Bull 36:97–107CrossRefGoogle Scholar
- 18.Barabási AL, Stanley HE (1995) Fractal concepts in surface growth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- 19.Najibi Ilkhechi N, Ghobadi N, Yahyavi F (2017) Opt Quant Electron 49:39–48CrossRefGoogle Scholar
- 20.Davies S, Hall P (1999) J Roy Stat Soc B 61:3–37CrossRefGoogle Scholar
- 21.Peressadko AGH, Persson BNJ (2005) Phys Rev Lett 95:124301–124305CrossRefGoogle Scholar
- 22.Zhao Y P, Wang L S, Yu T X (2003) J Adhes Sci Technol 17:519–546CrossRefGoogle Scholar
- 23.Najibi Ilkhechi N, Ghobadi N (2016) J Mater Sci: Mater Electron 27(11):12050–12059Google Scholar
- 24.Guan K (2005) Surface Coatings Technol 191:155–160CrossRefGoogle Scholar
- 25.Wenzel R N (1963) Ind Eng Chem 28:988–994CrossRefGoogle Scholar