Advertisement

Silicon

pp 1–6 | Cite as

Investigation of Strongly Hydrophobic and Thick Porous Silicon Stain Films Properties

  • Maha Ayat
  • Mohamed Kechouane
  • Chafiaa Yaddadene
  • Malika Berouaken
  • Katia Ayouz
  • Luca Boarino
  • Noureddine Gabouze
Original Paper
  • 4 Downloads

Abstract

Porous silicon (PSi) structures with strong hydrophobicity have been achieved by chemical etching of p-type silicon substrates in a solution based on hydrofluoric acid solution (HF) and vanadium oxide (V2O5). The surface morphology and microstructure of the elaborated structured silicon surfaces were investigated using Scanning Electron Microscope (SEM), contact angle and Fourier Transform Infrared spectroscopy (FTIR). The results show that the obtained structures exhibit hierarchically porous surfaces with porous pillars of silicon (PPSi) and an important hydrophobicity of the surface. The electrical properties of those PPSi structures were investigated in presence of 10 ppm of NO2 gas. The response time was about 30s at room temperature. Our results demonstrate that PPSi/Si are highly hydrophobic for long time and suitable for applications in the field of self-cleaning and may be a good candidate in elaborating practical NO2 sensors.

Keywords

Porous silicon Pillars structures Hydrophobicity Gas sensing applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was funded under the Algerian General Directorate of Scientific Research and Technological Development (DGRSDT).

SEM characterizations and gas sensing experiments have been performed at the Nanofacility Division, Piemonte, Torino in the framework of the EU Project NAS-ERA.

A special acknowledgment, to Pr. Leigh T. Canham for his participation in the preparation of the present manuscript.

References

  1. 1.
    Rahman A, Song G, Bhatt AI, Choy Wong Y, Wen C (2015). Adv Funct Mater 26(5):647–678CrossRefGoogle Scholar
  2. 2.
    Zhou W, Dai X, Fu TM, Xie C, Liu J, Lieber CM (2014). Nano Lett 14(3):1614–1619CrossRefGoogle Scholar
  3. 3.
    Zhang B, Jie J, Zhang X, Ou X, Zhang X (2017). ACS Appl Mater Interfaces 9(40):34527–34543CrossRefGoogle Scholar
  4. 4.
    Yang Y, Zhang H, Zhu G, Lee S, Lin Z-H, Wang ZL (2013). ACS Nano 7(1):785–790CrossRefGoogle Scholar
  5. 5.
    Ko MD, Rim T, Kim K, Meyyappan M, Baek CK (2015). Sci Rep 5:11646CrossRefGoogle Scholar
  6. 6.
    Lv J, Zhang T, Zhang P, Zhao Y, Li S (2018). Nanoscale Res Lett 13:110CrossRefGoogle Scholar
  7. 7.
    Fukata N, Subramani T, Jevasuwan W, Dutta M, Bando Y (2017). Small 13:1701713CrossRefGoogle Scholar
  8. 8.
    Wippermann S, He Y, Voros M, Galli G (2016). Appl Phys Rev 3:040807CrossRefGoogle Scholar
  9. 9.
    Chen C, Fan Y, Gu J, Wu L, Passerini S, Mai L (2018). J Phys D Appl Phys 51:11Google Scholar
  10. 10.
    Chan CK, Peng HL, Liu G, Mc Ilwrath K, Zhang XF, Huggins RA, Cui Y (2008). Nat Nanotechnol 3:31CrossRefGoogle Scholar
  11. 11.
    Dwivedi P, Dhanekar S, Das S (2018). Nanotechnology 29:275503CrossRefGoogle Scholar
  12. 12.
    Dwivedi P, Das S, Dhanekar S (2017). Superlattice Microst 104:547CrossRefGoogle Scholar
  13. 13.
    Hakim MMA, Lombardini M, Sun K, Giustiniano F, Roach PL, Davies DE, Howarth PH, Planque MRR, Morgan H, Ashburn P (2012). Nano Lett 12(4):1868CrossRefGoogle Scholar
  14. 14.
    Kolasinski KW, Barclay W (2013). Angew Chem Int Ed 52:6731–6734CrossRefGoogle Scholar
  15. 15.
    Kolasinski KW, Yadlovskiy J (2011). Phys Status Solidi C 8(6):1749–1753CrossRefGoogle Scholar
  16. 16.
    Sailor (2012) Porous silicon in practice: preparation, characterization and applications. Wiley, Weinheim, GermanyGoogle Scholar
  17. 17.
    Kolasinski KW (2005). Curr Opin Solid State Mater Sci 9:73–83CrossRefGoogle Scholar
  18. 18.
    Barillaro G, Nannini A, Piotto M (2002). Sensors Actuators A 102:195–201CrossRefGoogle Scholar
  19. 19.
    Jane A, Dronov R, Hodges A, Voelcker NH (2009). Trends Biotechnol 27:230–239CrossRefGoogle Scholar
  20. 20.
    Li W, Ding C, Cai Y, Liu J, Wang L, Ren Q, XuM J (2018). Sensors 18:660CrossRefGoogle Scholar
  21. 21.
    Kandziolka M, Charlton JJ, Kravchenko II, Bradshaw J a, Merkulov I a, Sepaniak MJ, Lavrik NV (2013). Anal Chem 85:9031–9038CrossRefGoogle Scholar
  22. 22.
    Angelescu A, Kleps I, Mihaela M, Simion M, Neghina T, Petrescu S, Moldovan N, Paduraru C, Raducanu A (2003). Rev Adv Mater Sci 5:440–449Google Scholar
  23. 23.
    Xie C, Hanson L, Cui Y, Cui B (2011). Proc Natl Acad Sci U S A 108(10):3894–3899CrossRefGoogle Scholar
  24. 24.
    Mohamed Elsayed Y, Gouda A, Ismail Y, Swillam MA; (2018), Proc SPIE 10541; 1054127Google Scholar
  25. 25.
    Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009). Nat Mater 8:331–336CrossRefGoogle Scholar
  26. 26.
    Oh J, Deutsch TG, Yuan H-C, Branz HM (2011). Energy Environ Sci 4:1690–1694CrossRefGoogle Scholar
  27. 27.
    Barberoglou M, Zorba V, Pagozidis A, Fotakis C, Stratakis E (2010). Langmuir 26:13007–13014CrossRefGoogle Scholar
  28. 28.
    Yeo CI, Kim JB, Song YM, Lee YT (2013). Nanoscale Res Lett 8:159CrossRefGoogle Scholar
  29. 29.
    Rong J, Masarapu C, Ni J, Zhang Z, Wei B (2010). ACS Nano 4:4683–4690CrossRefGoogle Scholar
  30. 30.
    Ge M, Fang X, Rong J, Zhou C (2013). Nanotechnology 24:422001CrossRefGoogle Scholar
  31. 31.
    Ayat M, Belhousse S, Boarino L, Gabouze N, Boukherroub R, Kechouane M (2014). Nanoscale Res Lett 9:482CrossRefGoogle Scholar
  32. 32.
    Li XJ, Hu X, Jia Y, Zhang YH (1999). Appl Phys Lett 75:2906–2908CrossRefGoogle Scholar
  33. 33.
    Xu H-J, Fu X-N, Sun X-R, Li X-J (2005). Acta Phys Sin 54:2352–2357Google Scholar
  34. 34.
    Koch BML, Amirfazli A, Elliott JAW (2014). J Phys Chem C 118:23777–23782CrossRefGoogle Scholar
  35. 35.
    Kalantar-zadeh K (2013) Sensors: an introductory course, vol. 9781461450528, pp. 1–196, 2013Google Scholar
  36. 36.
    Boarino L, Baratto C, Geobaldo F, Amato G, Comini E, Rossi AM, Faglia G, Lerondel G, Sberveglieri G (2000). Mater Sci Eng B69–70:210–214CrossRefGoogle Scholar
  37. 37.
    Hui-Qing C, Ming H, Jing Z, Wei-Dan W (2012) Chin Phys B 21(5): 058201Google Scholar
  38. 38.
    Pancheri L, Oton CJ, Gaburro Z, Soncini G, Pavesi L (2003). Sensors Actuators B 89:237–239CrossRefGoogle Scholar
  39. 39.
    Gaburro Z, Oton C, Pavesi L, Pancheri L (2004). Appl Phys Lett 84(22):4388–4390CrossRefGoogle Scholar
  40. 40.
    Li XJ, Chen SJ, Feng CY (2007). Sensors Actuators B 123:461–465CrossRefGoogle Scholar
  41. 41.
    Yan D, Li S, Liu S, Tan M, Cao M (2018). J Alloys Compd 735:718–727CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Thin Films and Semiconductors (CMS) LaboratoryUniversity of Sciences and Technology Houari Boumediene, USTHBAlgiersAlgeria
  2. 2.Thin Films, Surfaces and Interfaces (CMSI) DivisionResearch Center in Semiconductors Technology for Energetics (CRTSE)AlgiersAlgeria
  3. 3.Nanofacility, Instituto Nazionale di Ricerca MetrologicaTorinoItaly

Personalised recommendations