pp 1–8 | Cite as

Passive Integrated Optical Gyroscope Based on Photonic Crystal Ring Resonator for Angular Velocity Sensing

  • Masoud Mohammadi
  • Saeed OlyaeeEmail author
  • Mahmood Seifouri
Original Paper


In this paper, we investigated the concept of the Sagnac effect in passive integrated optical gyroscope base photonic crystal ring resonator for angular velocity sensing. This configuration utilizes one 3 dB coupler, two Bus waveguides, and five ring resonators for rotation sensing. The structure has been designed using dielectric silicon rods which are embedded in air. The transmission efficiency of the photonic crystal ring resonator at 1551 nm is about 96% with quality factor and bandwidth values equal to 4326 and 0.35 nm, respectively. By measuring the power of the output port, it is possible to estimate the phase shift and then to measure the rotation rate. The central wavelength of structure is assumed to be equal to 1569.9 nm. The structure characteristics have been investigated by using the two-dimensional finite-difference time-domain method. The footprint of the structure is approximately 279 μm2.


Optical gyroscope Photonic crystal Ring resonator Angular velocity sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mohammadi M, Birjandi MAM (2015) Five-port power splitter base on pillar photonic crystal. Iranian J Sci Technol 39(E1):93–100Google Scholar
  2. 2.
    Liu T, Zakharian AR, Fallahi M (2004) Multimode interference based photonic crystal waveguide power splitter. J Lightwave Technol 22(12):2842–2846CrossRefGoogle Scholar
  3. 3.
    Foghani S, Kaatuzian H, Danaie M (2010) Simulation and design of a wideband T-shaped photonic crystal splitter. Opt Appl XL(4):863–872Google Scholar
  4. 4.
    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light2nd edn. Princeton University Press, PrincetonGoogle Scholar
  5. 5.
    Wu Z, Xie K, Yang H (2012) Band gap properties of two dimensional photonic crystals with rhombic lattice. Optik 123:534–536CrossRefGoogle Scholar
  6. 6.
    Yang D, Wang B, Chen X, Wang C, Ji Y (2017) Ultracompact on-chip multiplexed sensor array based on dense integration of flexible 1-D photonic crystal nanobeam cavity with large free spectral range and high Q-factor. IEEE Photon J 9(4), Art. No. 4900412Google Scholar
  7. 7.
    Williams C, Banan B, Cowan G, Liboiron-Ladouceur O (2016) A source-synchronous architecture using mode-division multiplexing for on-chip silicon photonic interconnects. IEEE J Sel Top Quantum Electron 22(6), Art. No. 8300109Google Scholar
  8. 8.
    Arafa S, Bouchemat M, Bouchemat T, Benmerkhi A (2017) High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities. Nanophotonics and Micro/Nano Optics International Conference (NANOP), 139Google Scholar
  9. 9.
    Fallahi V, Seifouri M, Olyaee S, Alipour-Banaei H (2017) Four-channel optical demultiplexer based on hexagonal photonic crystal ring resonators. Opt Rev 24(4):605–610CrossRefGoogle Scholar
  10. 10.
    Robinson S, Dhanlaksmi N (2017) Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sens 7(1):11–19CrossRefGoogle Scholar
  11. 11.
    Olyaee S, Mohebzadeh Bahabady A (2015) Designing a novel photonic crystal nano-ring resonator for biosensor application. Opt Quant Electron 47(7):1881–1888CrossRefGoogle Scholar
  12. 12.
    Sheng Li J (2014) Fast-response terahertz wave switch based on T-shaped photoniccrystal waveguide. Optik 125:3221–3223CrossRefGoogle Scholar
  13. 13.
    Seifouri M, Fallahi V, Olyaee S (2018) Ultra high-Q optical filter based on photonic crystal ring resonator. Photon Netw Commun 35(2):225–230CrossRefGoogle Scholar
  14. 14.
    Mohebzadeh-Bahabady A, Olyaee S (2018) All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on interference effect. IET Optoelectron 12(4):191–195CrossRefGoogle Scholar
  15. 15.
    Olyaee S, Seifouri M, Mohebzadeh-Bahabady A, Sardari M (2018) Realization of all-optical NOT and XOR logic gates based on interference effect with high contrast ratio and ultra-compacted size. Opt Quant Electron 50(11):1–12Google Scholar
  16. 16.
    Scheuer J, Yariv A (2006) Sagnac effect in coupled-resonator slow-light waveguide structures. Phys Rev Lett 96:053901CrossRefGoogle Scholar
  17. 17.
    Scheuer J (2016) Quantum and thermal noise limits of coupled resonator optical waveguide and resonant waveguide optical rotation sensors. J Opt Soc Am B 33(9)Google Scholar
  18. 18.
    Zhang H, Chen J, Jin J, Lin J, Zhao L, Bi Z, Huang A, Xiao Z (2016) On-chip modulation for rotating sensing of gyroscope based on ring resonator coupled with Mach–Zehnder interferometer. Sci Rep 6Google Scholar
  19. 19.
    Passaro VMN, Tullio CD, Troia B, Notte ML, Giannoccaro G, Leonardis FD (2012) Recent advances in integrated photonic sensors. Sensors 12Google Scholar
  20. 20.
    Mancinelli M, Guider R, Masi M, Bettotti P, Vanacharla MR, Fedeli J, Pavesi L (2011) Optical characterization of a SCISSOR device. Opt Express 19:13664–13674CrossRefGoogle Scholar
  21. 21.
    Passaro VMN, Dell’Olio F, Ciminelli C, Armenise MN (2009) Efficient chemical sensing by coupled slot SOI waveguides. Sensors 9:1012–1032CrossRefGoogle Scholar
  22. 22.
    Sun B, Chen F, Chen K, Hu Z, Cao Y (2012) Integrated optical electric field sensor from 10kHz to 18kHz. IEEE Photon Technol Lett 24:1106–1108CrossRefGoogle Scholar
  23. 23.
    Scheuer J, Steinberg BZ (2009) Slow-light rotation sensors. SPIEGoogle Scholar
  24. 24.
    Ciminelli C, Dell’Olio F, Campanella CE, Armenise MN (2010) Photonic technologies for angular velocity sensing. Adv Opt Photon 2(3), 370–404Google Scholar
  25. 25.
    Wang Z, Yang Y, Lu P, Li Y, Zhao D, Peng C, Zhang Z, Li Z (2014) All-depolarized interferometric Fiber-optic gyroscope based on optical compensation. IEEE Photon J 6(1), Art. No. 7100208Google Scholar
  26. 26.
    Komljenovic T, Tran MA, Belt M, Gundavarapu S, Blumenthal DJ, Bowers JE (2016) Frequency modulated lasers for interferometric optical gyroscopes. Opt Lett 41(8)Google Scholar
  27. 27.
    Derbali J, AbdelMalek F, Obayya SSA (2011) Design of a compact photonic crystal sensor. Opt Quant Electron 42(8):463–472CrossRefGoogle Scholar
  28. 28.
    Nacer S, Aissat A (2013) High sensitivity photonic crystal waveguide sensors. Opt Quant Electron 45(5):423–431CrossRefGoogle Scholar
  29. 29.
    Sankar Dutta H, Pal S (2013) Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Opt Quant Electron 45(9):907–917CrossRefGoogle Scholar
  30. 30.
    Malykin GB (2014) Sagnac effect in ring lasers and ring resonators. How does the refractive index of the optical medium influence the sensitivity to rotation?. IOP science. Physics-Uspekhi 57(7):714–720CrossRefGoogle Scholar
  31. 31.
    Chen W, Lou S, Wang L, Zou H, Lu W, Jian S (2011) Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber. IEEE Photon Technol Lett 23:1639–1641CrossRefGoogle Scholar
  32. 32.
    Tam HY, Khijwania SK, Dong XY (2007) Temperature-intensitive pressure sensor using a polarization-maintaing photonic crystal fiber based sagnac interferometer. In: Proceedings of Optical Fiber Communication and Optoelectronics Conference, Shanghai, China, 17-19 October 2007, pp 345–347Google Scholar
  33. 33.
    Fu HY, Tam HY, Shao LY, Dong X, Wai PK, Lu C, Khijwania SK (2008) Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl Opt 47:2835–2839CrossRefGoogle Scholar
  34. 34.
    Ciminelli C, Olio FD, Campanella CE, Armenise MN (2010) Photonic technologies for angular velocity sensing. Adv Opt Photon 2:370–404CrossRefGoogle Scholar
  35. 35.
    Terrel M, Digonnet MJF, Fan S (2009) Performance comparison of slow-light coupled resonator optical gyroscopes. Laser Photonics Rev 3(5):452–465CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Nano-photonics and Optoelectronics Research Laboratory (NORLab)Shahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations