pp 1–8 | Cite as

Deposition of Organosilicon-Plasma Coating onto Fine Graphite Micropowder with a Downstream Tubular PECVD Reactor

  • V. R. GiampietroEmail author
  • M. Gulas
  • V. Wood
  • P. Rudolf von Rohr
Original Paper


Fine graphite micropowder was processed in a downstream tubular reactor to perform a fast and homogeneous plasma-enhanced chemical vapor deposition of an organosilicon-plasma coating onto the powder surface. As a single process run results in the deposition of a non-continuous coating, consisting of a nanoparticle distribution, on the powder surface, the powder was repeatedly reprocessed until a continuous coating was obtained. The coating was imaged with focused ion-beam scanning electron microscopy and chemically characterized with Raman spectroscopy and X-ray photoelectron spectroscopy. The assessment of the powder flowability was also performed to investigate the roughness of the coated surface. The chemical characterization indicated that the coating is composed of amorphous hydrogenated silicon carbide with a little oxygen contamination.


PECVD Micropowders FIB-SEM XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Scientific Center for Optical and Electron Microscopy of the ETH Zürich is gratefully acknowledged for providing access to FIB-SEM facility and training. Prof. Dr. Antonella Rossi and Mr. Giovanni Cossu of the Department of Materials of the ETH Zürich are also gratefully acknowledged for providing access to XPS facility, training and technical support, while Dr. Robert Büchel of the Institute of Process Engineering of the ETH Zürich is gratefully acknowledged for providing training on Raman spectroscopy. Financial support comes from the Commission of Technology and Innovation and the Claude & Giuliana Foundation (Switzerland).


  1. 1.
    H. Yasuda, Plasma Polymerization, academic press Inc., USA 1985Google Scholar
  2. 2.
    Chapman B (1980) Glow Discharge Processes: Sputtering and Plasma Etching. Wiley, USAGoogle Scholar
  3. 3.
    V.R. Giampietro, Ph.D. Thesis, ETH Zurich, 2018Google Scholar
  4. 4.
    Jafari R, Tatoulian M (2011) F. Arefi-Khonsari. Reactive & Functional Polymers 71:520CrossRefGoogle Scholar
  5. 5.
    Sonnenfeld A, Spillmann A, Arpagaus C, Rudolf von Rohr P (2009). Plasma Processes and Polymer 6:170CrossRefGoogle Scholar
  6. 6.
    Inagaki N, Tasaka S, Ishij K (1993). J Appl Polym Sci 48:1433CrossRefGoogle Scholar
  7. 7.
    Giampietro VR, Roth C, Gulas M, Wood V, Rudolf von Rohr P (2016). Plasma Process Polym 13:334CrossRefGoogle Scholar
  8. 8.
    Xu C, Zhu J (2005). Chemical Engineering Science 60:6529CrossRefGoogle Scholar
  9. 9.
    Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J (2004). Reactive & Functional Polymers 61:221CrossRefGoogle Scholar
  10. 11.
    Caquineau L, Aiche H, Vergnes B, Despax B (2012). Caussat, Surface & Coatings Technology 206:4814CrossRefGoogle Scholar
  11. 12.
    Godfrey SP, Kinmond EJ, Badyal JPS, Little IR (2001). Chem Mater 13:513CrossRefGoogle Scholar
  12. 13.
    Bayer C, Karches M, Matthews A, von Rohr PR (1998). Chemical Engineering & Technology 21:427CrossRefGoogle Scholar
  13. 14.
    von Rohr PR, Borer B (2007). Chem Vap Depos 13:499CrossRefGoogle Scholar
  14. 15.
    Borer B (2005) Ph. Rudolf von Rohr. Surface & Coatings Technology 200:377CrossRefGoogle Scholar
  15. 16.
    Borer B, Sonnenfeld A (2006) Ph. Rudolf von Rohr. Surface & Coatings Technology 201:1757CrossRefGoogle Scholar
  16. 17.
    Wei F, Zhu JX (1996). Journal of Chemical Engineering 64:345Google Scholar
  17. 18.
    Arpagaus C, Sonnenfeld A, Rudolf von Rohr P (2005). Chemical Engineering Technology 28:87CrossRefGoogle Scholar
  18. 19.
    Roth C, Keller L, Rudolf von Rohr P (2012). Surface & Coating Technology 206:3832CrossRefGoogle Scholar
  19. 20.
    B. Borer, Ph.D. Thesis, ETH Zurich, 2005Google Scholar
  20. 21.
    Roth C, Kuensch Z, Sonnenfeld A, Rudolf von Rohr P (2011). Surface & Coating Technology 205:S597CrossRefGoogle Scholar
  21. 22.
    C. Roth, Ph.D. Thesis, ETH Zurich, 2012Google Scholar
  22. 23.
    Chung DDL (2002). Journal of Materials Science 37:1475CrossRefGoogle Scholar
  23. 24.
    Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014). J Power Sources 246:167CrossRefGoogle Scholar
  24. 25.
    Ferrari AC, Robertson J (2000). Phys Rev B 61:14095CrossRefGoogle Scholar
  25. 26.
    Nisol B, Reniers F (2015). J Electron Spectrosc Relat Phenom 200:311CrossRefGoogle Scholar
  26. 27.
    Seah MP (2001). Surface Interface Analysis 31:721CrossRefGoogle Scholar
  27. 28.
    G.E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation (Physical Electronics Division), Eden Prairie, MN, 1979Google Scholar
  28. 29.
    Atzei D, Fantauzzi M, Rossi A, Fermo P, Piazzalunga A, Valli G, Vecchi R (2014). Appl Surf Sci 307:120CrossRefGoogle Scholar
  29. 30.
    Alexander MR, Short RD, Jones FR (1996). J Mater Sci 31:1879CrossRefGoogle Scholar
  30. 31.
    Nemanick EJ, Hurley PT, Webb LJ, Knapp DW, Michalak DJ, Brunschwig BS, Lewis NS (2006). J Phys Chem B 110:14770SCrossRefGoogle Scholar
  31. 32.
    Beamson G, Briggs D (1992) High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Wiley, ChichesterGoogle Scholar
  32. 33.
    Avila A, Montero I, Galán L, Ripalda JM, Levy R (2001). J Appl Phys 89:212CrossRefGoogle Scholar
  33. 34.
    Scofield JH (1976). J Electron Spectrosc Relat Phenom 8:129CrossRefGoogle Scholar
  34. 35.
    Reilman RF, Msezane A, Manson ST (1976). J Electron Spectrosc Relat Phenom 8:389CrossRefGoogle Scholar
  35. 36.
    Seah MP, Dench WA (1979). Surf Interface Anal 1:2CrossRefGoogle Scholar
  36. 37.
    Mayer C.K.K., Ph.D. Thesis, ETH Zurich, 2011Google Scholar
  37. 38.
    S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer-Verlag, Heidelberg, D, 2013Google Scholar
  38. 39.
    D. Schulze, Flow Properties of Powders and Bulk Solids, (accessed February, 2014)Google Scholar
  39. 40.
    Robertson J (2002). Material Science and Engineering R37:129Google Scholar
  40. 41.
    Ding YS, Li WN, Iaconetti S, Shen XF, DiCarlo J, Galasso FS, Suib SL (2006). Surface & Coatings Technology 200:3041CrossRefGoogle Scholar
  41. 42.
    Cançadoa LG, Takaia K, Enokia T, Endob M, Kimb YA, Mizusakib H, Spezialic NL, Jorioc A, Pimentac MA (2008). Carbon 46:272CrossRefGoogle Scholar
  42. 43.
    Wang H, Yoshio M, Abe T, Ogumi Z (2002). J Electrochem Soc 149(4):A499CrossRefGoogle Scholar
  43. 44.
    Choi WK, Loo FL, Ling CH, Loh FC, Tan KL (1995). J Appl Phys 78:7289CrossRefGoogle Scholar
  44. 45.
    Choi WK, Chan YM, Ling CH, Lee Y, Gopalakrishnan R, Tan KL (1995). J Appl Phys 77:827CrossRefGoogle Scholar
  45. 46.
    Nalwa HS (ed) (2001) Silicon-Based Materials and Devices. academic press, USAGoogle Scholar
  46. 47.
    Derst CWG, Bhatia KL, Kratschmer W, Kalbitzer S (1989). Appl Phys Lett 54:1722CrossRefGoogle Scholar
  47. 48.
    Xu Z, He Z, Song Y, Fu X, Rommel M, Luo X, Hartmaier A, Zhang J, Fang F (2018). Micromachines 9(7):361CrossRefGoogle Scholar
  48. 49.
    Annett Thøgersen JH, Selj ES (2012). Marstein, Journal of the Electrochemical Society 159(5):D276CrossRefGoogle Scholar
  49. 50.
    Fonseca JLC, Badyal JPS (1992). Macromolecules 25:4730CrossRefGoogle Scholar
  50. 51.
    Fonseca JLC, Tasker S, Apperley DC, Badyal JPS (1996). Macromolecules 29:17CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • V. R. Giampietro
    • 1
    Email author
  • M. Gulas
    • 2
  • V. Wood
    • 3
  • P. Rudolf von Rohr
    • 1
  1. 1.Institute of Process EngineeringETH ZürichZurichSwitzerland
  2. 2.Imerys Graphite & CarbonBodioSwitzerland
  3. 3.Department of Information Technology and Electrical EngineeringETH ZürichZurichSwitzerland

Personalised recommendations