pp 1–9 | Cite as

Synthesis, Characterization, and Properties of N- Heteroaryl Formamide Derivatives in the Presence of the Al-MCM-41-Nanocatalyst

  • Kianoosh Ahmadi Meleh Amiri
  • Zohreh SaadatiEmail author
  • Zahra Vafayi Bagheri
Original Paper


This study aims to find out an efficient and simple method for N-formylation of different kinds of heteroaryl amines. The method is based on presence of formic acid and use of aluminum nanoparticles, loaded on a regular porous silica MCM-41 (Al-MCM-41), as the catalyst (at 60 °C in a solvent-free condition). The synthesized Al-MCM-41 nanocatalyst with average size 25–35 nm was characterized by FT-IR, SEM and TEM. The results show that the Al-MCM-41 nanocatalyst can provide yields of up 91% between 15 and 30 min for the N-formylation of different aromatic amines. The use of Al-MCM-41 nanocatalysts for the synthesis of N-heteroaryl formamide is reported for the first time in this article.

Graphical Abstract


Al-MCM-41 nanocatalyst Heteroaryl amine N-heteroaryl formamide Solvent- free 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the Islamic Azad University of Omidiyeh. We would also like to thank Mrs. Saedeh Kamalifar for her contribution to this manuscript.


  1. 1.
    Bandgar B, Kinkar S, Chobe S, Mandawad G, Yemul O, Dawane B (2011) Clean and green approach for N-formylation of amines using formic acid under neat reaction condition. Arch Appl Sci Res 3:246–251Google Scholar
  2. 2.
    Pettit G, Kalnins M, Liu T, Thomas E, Parent K (1961) Potential cancerocidal agents. III Formanilides. J Org Chem 26(7):2563–2566CrossRefGoogle Scholar
  3. 3.
    Kobayashi S, Yasuda M, Hachiya I (1996) Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates. Chem Lett 25(5):407–408CrossRefGoogle Scholar
  4. 4.
    Bonin M-A, Giguere D, Roy R (2007) N-Arylimidazole synthesis by cross-cycloaddition of isocyanides using a novel catalytic system. Tetrahedron 63(23):4912–4917CrossRefGoogle Scholar
  5. 5.
    Kobayashi S, Nishio K (1994) Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates. J Org Chem 59(22):6620–6628CrossRefGoogle Scholar
  6. 6.
    Blicke F, Lu C-J (1952) Formylation of amines with chloral and reduction of the N-formyl derivatives with lithium aluminum hydride. J Am Chem Soc 74(15):3933–3934CrossRefGoogle Scholar
  7. 7.
    Waki M, Meienhofer J (1977) Efficient preparation of N. alpha.-formylamino acid tert-butyl esters. J Org Chem 42(11):2019–2020CrossRefGoogle Scholar
  8. 8.
    Chen FM, Benoiton NL (1979) A general method for formylating sensitive amino acid esters. Synthesis 1979(09):709–710CrossRefGoogle Scholar
  9. 9.
    Reddy PG, Kumar GK, Baskaran S (2000) A convenient method for the N-formylation of secondary amines and anilines using ammonium formate. Tetrahedron Lett 41(47):9149–9151CrossRefGoogle Scholar
  10. 10.
    Saidi O, Bamford MJ, Blacker AJ, Lynch J, Marsden SP, Plucinski P, Watson RJ, Williams JM (2010) Iridium-catalyzed formylation of amines with paraformaldehyde. Tetrahedron Lett 51(44):5804–5806CrossRefGoogle Scholar
  11. 11.
    Yang DS, Jeon HB (2010) Convenient N-formylation of amines in dimethylformamide with methyl benzoate under microwave irradiation. Bull Kor Chem Soc 31(5):1424–1426CrossRefGoogle Scholar
  12. 12.
    Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Kumar DN (2008) A remarkably simple N-formylation of anilines using polyethylene glycol. Tetrahedron Lett 49(14):2225–2227CrossRefGoogle Scholar
  13. 13.
    Olyaei A, Bagheri H, Sadeghpour M, Razeghi R, Vaziri M (2014) Nanoparticles: an efficient and recyclable nanocatalyst for the rapid synthesis of N-heteroaryl formamides under solvent-free conditions. Acta Chim Slov 61:197–201PubMedGoogle Scholar
  14. 14.
    Kim JG, Jang DO (2010) Indium-catalyzed N-formylation of amines under solvent-free conditions. ChemInform 41(38)Google Scholar
  15. 15.
    Sheikhshoaie I, Ramezanpour S, Sheikhshoaei M (2018) Synthesis and characterization of nano sized ZnO and CdO by direct thermal decomposition of their nano sized metal Schiff base complexes. Chem Method 2:103–113Google Scholar
  16. 16.
    Shekhar AC, Kumar AR, Sathaiah G, Paul VL, Sridhar M, Rao PS (2009) Facile N-formylation of amines using Lewis acids as novel catalysts. Tetrahedron Lett 50(50):7099–7101CrossRefGoogle Scholar
  17. 17.
    Thakuria H, Borah BM, Das G (2007) Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—a comparative study. J Mol Catal A Chem 274(1–2):1–10CrossRefGoogle Scholar
  18. 18.
    Sheikhshoaie I, Davary S, Ramezanpour S (2018) Rapid synthesis of a nano-sized copper (II) oxide by calcination of the cu (II) Schiff base complex. Chem Method 2:47–55Google Scholar
  19. 19.
    Sajjadifar S, Arzehgar Z, Ghayuri A (2018) Zn3 (BTC) 2 as a highly efficient reusable catalyst for the synthesis of 2-aryl-1H-Benzimidazole. J Chin Chem Soc 65(2):205–211CrossRefGoogle Scholar
  20. 20.
    Sajjadifar S, Arzehgar Z, Khoshpoori S (2018) Zn 3 (BTC) 2 as a metal–organic framework and effective catalyst for the regioselective β-azidoalcohols and β-thiocyanohydrins of epoxides in water. J Inorg Organomet Polym Mater 28(3):837–846CrossRefGoogle Scholar
  21. 21.
    Mohammadi B, Salmani L (2018) Synthesis of 3-amino-5-methyl-[1, 1′-biaryl]-2, 4-dicarbonitriles using ZnFe2O4 magnetic nanoparticles. Asian J Green Chem 3:51–58CrossRefGoogle Scholar
  22. 22.
    Hassani H, Zakerinasab B, Nozarie A (2018) Sulfonic acid supported on Fe2O3/VO2 nanocatalyst: a highly efficient and reusable nanocatalyst for synthesis of spirooxindole derivatives. Asian J Green Chem 3:59–69CrossRefGoogle Scholar
  23. 23.
    Hasani H, Irizeh M (2018) One-pot synthesis of spirooxindole derivatives catalyzed by ZnFe2O as a magnetic nanoparticles. Asian J Green Chem 3:85–95Google Scholar
  24. 24.
    Arab F, Rasouli N, Movahedi M (2018) Enhanced adsorption of anionic diazo dye by magnetic layered double hydroxide (Zn0. 5Cu0. 5Fe2O4@ SiO2@ Ni-CrLDH) from aqueous solution. Asian J Green Chem 3:25–40CrossRefGoogle Scholar
  25. 25.
    Motamedi R, Rezanejade Bardajee G, Makenali Rad S (2017) Cu (II)-Schiff base/SBA-15 as an efficient catalyst for synthesis of decahydroacridine-1, 8-diones. Asian J Green Chem 2:89–97CrossRefGoogle Scholar
  26. 26.
    Chakraborty S, Gellrich U, Diskin-Posner Y, Leitus G, Avram L, Milstein D (2017) Manganese-catalyzed N-formylation of amines by methanol liberating H2: a catalytic and mechanistic study. Angew Chem Int Ed 56(15):4229–4233CrossRefGoogle Scholar
  27. 27.
    Bindig R, Butt S, Hartmann I, Matthes M, Thiel C (2012) Application of heterogeneous catalysis in small-scale biomass combustion systems. Catalysts 2(2):223–243CrossRefGoogle Scholar
  28. 28.
    Preedasuriyachai P, Kitahara H, Chavasiri W, Sakurai H (2010) N-formylation of amines catalyzed by nanogold under aerobic oxidation conditions with MeOH or formalin. Chem Lett 39(11):1174–1176CrossRefGoogle Scholar
  29. 29.
    Tajbakhsh M, Alinezhad H, Nasrollahzadeh M, Kamali TA (2016) Preparation, characterization and application of nanosized CuO/HZSM-5 as an efficient and heterogeneous catalyst for the N-formylation of amines at room temperature. J Colloid Interface Sci 471:37–47CrossRefGoogle Scholar
  30. 30.
    Wang J, Gu H (2015) Novel metal nanomaterials and their catalytic applications. Molecules 20(9):17070–17092CrossRefGoogle Scholar
  31. 31.
    Wang G, Wang Y, Liu Y, Liu Z, Guo Y, Liu G, Yang Z, Xu M, Wang L (2009) Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin. Appl Clay Sci 44(1–2):185–188CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryIslamic Azad UniversityOmidiyehIran
  2. 2.Department of ChemistryBirjand UniversityBirjandIran

Personalised recommendations