Advertisement

Silicon

pp 1–8 | Cite as

MWCNT/Cellulose Collector as Scaffold of Nano-Silicon for Li-Si Battery

  • Xiaogang SunEmail author
  • Xu Li
  • Jie Wang
  • Wei Chen
Original Paper
  • 11 Downloads

Abstract

Silicon-based anodic materials have the highest lithium storage capacity of 4200mAh/g and lower voltage platform. It was considered to be one of the most potential anode materials for lithium-ion batteries. However, the main obstacle of silicon as anode is the huge volume change of a 400% during the charge-discharge process which resulted in the pulverization of silicon and big irreversible capacity. The silicon-carbon composite anode can accommodate the voluume expandition and improve cycle performance. In this work, nano-silicon and multiwalled carbon nanotubes(MWCNTs) composite anodes were prepared. Highly conductive carbon nanotubes paper(MCC) with porous structure and interconnected channel was used as host of nano-silicon to replace the copper foil current collector. The morphology and electrochemical performance of the composite anodes was analyzed by scanning electron microscopy (SEM), transmission electron microscopy(TEM), galvanostatic charge-discharge tests and electrochemical impedance spectroscopy(EIS) tests. The results demonstrated the reversible capacity of Si/MCC composites anode maintained at 900 mAh/g after 200 cycles at 200 mA/g and kept a high coulomb efficiency.

Keywords

Nano silicon Carbon nanotubes Conductive paper Current collector Lithium ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding Information

This study was funded by and Jiangxi education fund (KJLD13006). Jiangxi scientific fund (20142BBE50071)

Compliance with Ethical Standards

Conflict of interests

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    Jieyi Y, Sun G, Xinglong D (2017) Electrochemical performance of Si nanoribbons as anode material for Li-ion battery synthesized by Arc-discharge plasma. Chin J Mater Res 31(3):161–167Google Scholar
  2. 2.
    de las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85CrossRefGoogle Scholar
  3. 3.
    Lv Q, Liu Y, Ma T et al (2015) Hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries. ACS Appl Mater Interfaces 7:23501–23506CrossRefGoogle Scholar
  4. 4.
    Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490CrossRefGoogle Scholar
  5. 5.
    Huggings RA, Cui YI (2011) High-performance lithium battery anodes using silicon nanowires. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, pp 187Google Scholar
  6. 6.
    Zhang Y, Zhang XG, Zhang HL et al (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochimica acta 51(23):4994–5000CrossRefGoogle Scholar
  7. 7.
    Cao X, Chuan X, Li S et al (2016) Hollow silica spheres embedded in a porous carbon matrix and its superior performance as the anode for lithium-ion batteries. Part Part Syst Charact 33(2):110–117CrossRefGoogle Scholar
  8. 8.
    Yang Y, Wang Z, Zhou Y et al (2017) Synthesis of porous Si/graphite/carbon nanotubes@C composites as a practical high-capacity anode for lithium-ion batteries. Mater Lett 199:84–87CrossRefGoogle Scholar
  9. 9.
    Lee SW, Gallant BM, Lee Y et al (2012) Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energ Environ Sci 5(1):5437–5444CrossRefGoogle Scholar
  10. 10.
    Zheng D, Wu C, Li J et al (2013) Chemically shortened multi-walled carbon nanotubes used as anode materials for lithium-ion batteries. Physica E: Low-dimensional Syst Nanostruct 53:155–160CrossRefGoogle Scholar
  11. 11.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  12. 12.
    Marom R, Amalraj SF, Leifer N et al (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954CrossRefGoogle Scholar
  13. 13.
    Ma T, Yu X, Li H et al (2017) High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries. Nano Lett 17(6):3959CrossRefGoogle Scholar
  14. 14.
    An W, Fu J, Mei S et al (2017) Dual carbon layers hybridized mesoporous tin hollow spheres for fast-rechargeable and high-stable lithium-ion battery anode. J Mater Chem A 5(27):14422–14429CrossRefGoogle Scholar
  15. 15.
    Khomenko VG, Barsukov VZ (2007) Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries. Electrochimica acta 52(8):2829–2840CrossRefGoogle Scholar
  16. 16.
    Jeong MG, Du HL, Islam M et al (2017) Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett 17(9):5600–5606CrossRefGoogle Scholar
  17. 17.
    Zhou Z, Xu Y, Liu W et al (2010) High capacity si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries. J Alloys Compd 493(1):636–639CrossRefGoogle Scholar
  18. 18.
    Luo Z, Fan D, Liu X et al (2009) High performance silicon carbon composite anode materials for lithium ion batteries. J Power Sources 189(1):16–21CrossRefGoogle Scholar
  19. 19.
    Zuo P, Yin G, Yang Z et al (2009) Improvement of cycle performance for silicon/carbon composite used as anode for lithium ion batteries. Mater Chem Phys 115(2):757–760CrossRefGoogle Scholar
  20. 20.
    Luo F, Chu G, Xia X et al (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7(17):7651CrossRefGoogle Scholar
  21. 21.
    Dimov N, Xia Y, Yoshio M (2007) Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features. J Power Sources 171(2):886–893CrossRefGoogle Scholar
  22. 22.
    Gao H, Hou F, Zheng X et al (2015) Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications. Vacuum 112:1–4CrossRefGoogle Scholar
  23. 23.
    Wang B, Li X, Luo B et al (2015) Approaching the downsizing limit of silicon for surface-controlled lithium storage. Adv Mater 27(9):526–1532Google Scholar
  24. 24.
    Yao Y, Mcdowell MT, Ryu I et al (2949) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2011Google Scholar
  25. 25.
    Deshpande R, Cheng YT, Verbrugge MW (2010) Modeling diffusion-induced stress in nanowire electrode structures. J Power Sources 195(15):5081–5088CrossRefGoogle Scholar
  26. 26.
    Pushparaj VL, Shaijumon MM, Kumar A et al (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577CrossRefGoogle Scholar
  27. 27.
    Gohier A, Laïk B, Kim KH et al (2012) High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv Mater 24(19):2592–2597CrossRefGoogle Scholar
  28. 28.
    Lee JH, Kim WJ, Kim JY et al (2008) Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources 176(1):353–358CrossRefGoogle Scholar
  29. 29.
    Yang X, Wen Z, Zhang L et al (2008) Synthesis and electrochemical properties of novel silicon-based composite anode for lithium-ion batteries. J Alloys Compd 464(1):265–269CrossRefGoogle Scholar
  30. 30.
    Yoon S, Lee S, Kim S et al (2015) Carbon nanotube film anodes for flexible lithium ion batteries. J Power Sources 279:495– 501CrossRefGoogle Scholar
  31. 31.
    Song B, Fang H, Yang J et al (2011) Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations. Energy Environ Sci 4(4):1379– 1384CrossRefGoogle Scholar
  32. 32.
    Chen S, Shen L, Peter A et al (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv. Mater. 1605650CrossRefGoogle Scholar
  33. 33.
    Zhang T, Gao J, Zhang HP et al (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun 9(5):886–890CrossRefGoogle Scholar
  34. 34.
    Tang W, Hou YY, Wang XJ et al (2012) A hybrid of MnO 2, nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors. J Power Sources 197(197):330–333CrossRefGoogle Scholar
  35. 35.
    Wang Y, Chen B, Zhang Y et al (2016) ZIF-8@MWCNT-Derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta 213:260–269CrossRefGoogle Scholar
  36. 36.
    Wang J, Hou X, Zhang M et al (2017) 3-Aminopropyltriethoxysilane-assisted si@sio2/CNTs hybrid microspheres as superior anode materials for Li-ion batteries. Silicon 9(1):97–104CrossRefGoogle Scholar
  37. 37.
    Zhang T, Gao J, Zhang HP et al (2007) Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem Commun 9(5):886–890CrossRefGoogle Scholar
  38. 38.
    Ni J-F, Zhou H-H, Chen J-T et al (2005) Study of current collectors for Li-ion batteries. Battery Bimonthly 41(17):2683–2689Google Scholar
  39. 39.
    Ye H, Xin S, Yin YX et al (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7(23):1700530CrossRefGoogle Scholar
  40. 40.
    Luo F, Chu G, Xia X et al (2015) Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries. Nanoscale 7(17):7651CrossRefGoogle Scholar
  41. 41.
    Salajkove M, Valentini L, Zhou Q et al (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechantronics EngineeringNanchang UniversityNanchangChina

Personalised recommendations