, Volume 11, Issue 4, pp 1885–1901 | Cite as

Thermo-mechanical and Erosion Wear Peculiarity of Hybrid Composites Filled with Micro and Nano Silicon Dioxide Fillers – A Comparative Study

  • Anant Krishan PunEmail author
  • Siddhartha
  • Akant Kumar Singh
Original Paper


This article presents the findings on thermo-mechanical and erosion wear characteristics of micro silicon dioxide (SiO2) fillers filled woven glass fiber based vinyl ester hybrid composites (MWGVHCs) as well as nano SiO2 filled woven glass fiber-vinyl ester hybrid composites (NWGVHCs). Wovenglass-vinyl ester based hybrid composites are developed, filled with 5wt.% and 10wt.% of micro and nano SiO2 fillers, respectively. Performance of filler filled composites is compared with the filler less composites. Thermo-mechanical analysis of hybrid composites is done as per ASTM standards. Angles of impact (30°, 45°, 60°, 75° and 90º), impact velocities (30, 55 and 80 m/s) and erodent size of 300, 450 and 600 µm is used for erosion wear test of fabricated composites. Taguchi statistical method is employed for design of experiments to optimize the process parameters. Findings reveal that hybrid composites filled with 10wt% of nano SiO2 filler performed best amongst all the in-class composites. In order to optimize the performance of fabricated composites VIKOR method is also implemented.


Erosion wear Woven glass fiber Micro and nano size SiO2 fillers Vinyl ester resin Taguchi design of experiment VIKOR method 

List of abbreviation




VlseKriterijuska Optimizacija I Komoromisno Resenje


Theoretical density of composite material


Weight fraction of matrix material


Weight fraction of particulate filler


Density of matrix material


Density of particulate filler

\(\frac {\mathrm {S}}{\mathrm {N}}\)

Signal to noise ratio


Number of observations


Observed data.


Group utility


Individual regret


aggregating index


Degree of freedom

Seq. SS

Sequential sum of squares

Adj SS

Extra sum of squares

Adj MS

Extra mean of squares



\(\bar {\eta }_{Micro\thinspace SiO_{2}}\)

Predicted average of erosion wear rate for micro SiO2 filler filled composites

\(\bar {\eta }_{Nano\thinspace SiO_{2}}\)

Predicted average of erosion wear rate for nano SiO2 filler filled composites

\(\bar {T}\)

Average of S/N ratio for complete experimental runs

A3, B3, C3 and D1

The mean response for factors at designated levels


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milton GW (2004) The theory of composites. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Ashby MF, Jones DRH (1998) Engineering materials 2. Butterworth- Heinemann, OxfordGoogle Scholar
  3. 3.
    Fukunaga H, Chou TW, Fukuda H (1984) J Reinf Plast Compos 3(2):145–160CrossRefGoogle Scholar
  4. 4.
    Jawaid M, Abdul Khalil HPS (2011) Carbohydr Polym 86:1–18CrossRefGoogle Scholar
  5. 5.
    Sathishkumar T, Naveen J, Satheeshkumar S (2014) J Reinf Plast Compos 33:454–471CrossRefGoogle Scholar
  6. 6.
    Gupta MK, Srivastava RK (2016) Polym-Plast Techn Eng 55(6):626–642CrossRefGoogle Scholar
  7. 7.
    Saba N, Tahir PM, Jawaid M (2014) Polymers 6:2247–2273CrossRefGoogle Scholar
  8. 8.
    Nayak RK, Ray BC (2017) Polym Bull 74:4175–4194CrossRefGoogle Scholar
  9. 9.
    Mishnaevsky L (2012) Comput Mech 50(2):195–207CrossRefGoogle Scholar
  10. 10.
    Czél G, Wisnom MR (2013) Compos Appl Sci Manuf 52:23–30CrossRefGoogle Scholar
  11. 11.
    Pandya KS, Veerraju C, Naik NK (2011) Mater Des 32:4094–4099CrossRefGoogle Scholar
  12. 12.
    Zahavi J, Nadiv S, Schmitt GF (1981) Wear 72:305–313CrossRefGoogle Scholar
  13. 13.
    Tripaty BS, Furey MJ (1993) Wear 162:385–396CrossRefGoogle Scholar
  14. 14.
    Suresha B, Chandramohan G, Sampathkumaran P, Seetharamu S, Vynatheya S (2006) J Reinf Plast Comp 25(7):771–782CrossRefGoogle Scholar
  15. 15.
    Latha PS, Rao MV (2018) Silicon 10:1543–1550CrossRefGoogle Scholar
  16. 16.
    Kaundal R (2018) Silicon,
  17. 17.
    Zang Z, Tang G, Li J, Li S (2012) Polym-Plast Technol 51:696–700CrossRefGoogle Scholar
  18. 18.
    Bula K, Jesionowski T (2012) Compos Interface 17:5–7, 603–614Google Scholar
  19. 19.
    Scott C, Ishida H, Maurer FHJ (1991) J Reinf Plast Comp 10:463–475CrossRefGoogle Scholar
  20. 20.
    Bagci M, Imrek H, Omari M (2011) Int J Maters Metall Eng 5(6):506–510Google Scholar
  21. 21.
    Jianguo Z (2014) J Thermoplast Compos 29(7):951–959CrossRefGoogle Scholar
  22. 22.
    Sugozu KB, Daghan B, Akdemir A, Ataberk N (2016) Ind Lubr Tribol 68(2):259–266CrossRefGoogle Scholar
  23. 23.
    Majhi M (2013) Growth and characterizations of sio2 thin film on silicon substrates, PhD, NIT Rourkela, Orissa, IndiaGoogle Scholar
  24. 24.
    Wang D, Gao J (2004) Int J Polym Mater 53(12):1085–1100CrossRefGoogle Scholar
  25. 25.
    Chen G, Tian M, Guo S (2006) J Macromol Sci B 45(5):709–725CrossRefGoogle Scholar
  26. 26.
    Ren J, Wang J, Wang H, Zhang J, Yang S (2009) J Macromol Sci B 48(6):1069–1080CrossRefGoogle Scholar
  27. 27.
    Tang G, Shao C, Hu X, Tang T (2014) J Thermoplast Compos 29(7):1020–1029CrossRefGoogle Scholar
  28. 28.
    Zhu JB, Yang XJ, Cui ZD, Zhu SL, Wei Q (2006) J Macromol Sci B 45(5):811–820CrossRefGoogle Scholar
  29. 29.
    Hou X, Hu Y, Hu X, Jiang D (2017) High Performance Polym 30(4):406–417CrossRefGoogle Scholar
  30. 30.
    He E, Wang S, Li Y, Wang Q (2017) Comp Mater Sci 134:93–99CrossRefGoogle Scholar
  31. 31.
    Wong T, Lau K, Tam W, Leng J, Etches JA (2014) Mater Design 56:254–257CrossRefGoogle Scholar
  32. 32.
    Zhao S, Schadler LS, Duncan R, Hillborg H, Auletta T (2008) Comp Sci Technol 68:2965–2975CrossRefGoogle Scholar
  33. 33.
    Abenojar J, Tutor J, Ballesteros Y, del Real JC, Martínez MA (2017) Compos Part B Eng 120:42–53CrossRefGoogle Scholar
  34. 34.
    Bachi M, Imrek H, Khalfan OM (2015) J Tribol 137:011602–7CrossRefGoogle Scholar
  35. 35.
    Li Z (2012) J Thermoplast Compos 27(6):793–800CrossRefGoogle Scholar
  36. 36.
    Vigneshwaran S, Uthayakumar M, Arumugaprabu V, Johnson RDJ (2018) J Reinf Plast Comp,
  37. 37.
    Agarwal BD, Broutman LJ (1990) Analysis and performance of fibre composites, 2nd edn. Wiley, IncGoogle Scholar
  38. 38.
    Glen SP (1993) Taguchi methods: a hand on approach. Addison-Wesley, New YorkGoogle Scholar
  39. 39.
    Opricovic S, Tzeng GH (2007) Eur J Oper Res 178:514–529CrossRefGoogle Scholar
  40. 40.
    Choobineh F, Behrens A (1992) J Oper Res Soc 43:907–918CrossRefGoogle Scholar
  41. 41.
    Sayadi MK, Heydari M, Shahanaghi K (2009) Appl Math Model 33:2257–2262CrossRefGoogle Scholar
  42. 42.
    Rout A, Satapathy A, Mantry S, Sahoo A, Mohanty T (2012) Procedia engineer 38:1863–1882CrossRefGoogle Scholar
  43. 43.
    Patnaik A, Satapathy A, Mahapatra SS (2009) J Tribol 131:031011–1-16Google Scholar
  44. 44.
    Naeimirad M, Zadhoush A, Neisiany RE (2016) J Compos Maters 50:435–446CrossRefGoogle Scholar
  45. 45.
    Friedrich K (2005) Polymer composites from nano- to macroscale, Springer, Zhang ZGoogle Scholar
  46. 46.
    Hagstrand PO, Bonjour F, Manson JAE (2005) Compos A 36:705–714CrossRefGoogle Scholar
  47. 47.
    Siddhartha, Patnaik A, Bhatt AD (2011) Maters design 32:615–627CrossRefGoogle Scholar
  48. 48.
    Qazvini NT, Mohammadi N (2005) Polymer 46:9088–9096CrossRefGoogle Scholar
  49. 49.
    Ornaghi HL, Pistor V, Zattera AJ (2012) J Non-Crystalline Solids 358:427–432CrossRefGoogle Scholar
  50. 50.
    Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Maters Sci Eng A 532:339–345CrossRefGoogle Scholar
  51. 51.
    Jawaid M, Abdul Khalil HPS, Hassan A, Dungani R, Hadiyane A (2013) Compos B Eng 45:619–624CrossRefGoogle Scholar
  52. 52.
    Rattan R, Bijwe J (2007) Wear 262:568–574CrossRefGoogle Scholar
  53. 53.
    Kaundal R (2014) Silicon 6:5–20CrossRefGoogle Scholar
  54. 54.
    Hutchings IM, Winter RE, Field JE (1976) Proc Royal Soc A 348:379–392CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNIT HamirpurHamirpurIndia

Personalised recommendations