Advertisement

Silicon

, Volume 11, Issue 4, pp 1829–1834 | Cite as

Luminescence Study of Stressed Si Nanoclusters in the Vicinity of Cu Nanoparticles

  • Gayatri SahuEmail author
Original Paper
  • 27 Downloads

Abstract

Stressed Si nanoclusters (NCs) are synthesized using two-stage metal ion implantation technique. XRD and Raman scattering measurements confirm the presence of NCs in the system. Luminescence study of stressed Si NCs has been done over a wide temperature range of 6 to 300 K. With increase in temperature narrow peaks observed at low temperature merging to a single broad PL. A detail analysis of these observed PL peaks at low temperature has been reported here. Contrary to other metal, presence of Cu does not enhance the luminescence as coming from Si NCs. A possible explanation of not observing PL at room temperature has been given. Nature and magnitude of stress is also calculated using Raman scattering method.

Keywords

Silicon nano-clusters Ion implantation Low temperature photoluminescence Raman scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Author would like to acknowledge the financial supports from DST, Govt. of India, for the funding under DST Women Scientist-A Scheme, Project No. SR/WOS-A/PM-1/2017. Help from Vikas Sahu, RRCAT Indore is highly appreciated for taking PL measurements.

References

  1. 1.
    Kim TY, Park NM, Kim KH, Sung GY, Ok YW, Sung TY, Choi C (2004) Appl Phys Lett 85:5355CrossRefGoogle Scholar
  2. 2.
    Choi Suk-Ho, Elliman RG (1999) Appl Phys Lett 75:968CrossRefGoogle Scholar
  3. 3.
    Kanemitsu Y, Shimizu N, Komoda T, Hemment PLF, Sealy BJ (1996) Phys Rev B 54:R4329CrossRefGoogle Scholar
  4. 4.
    Cullis AG, Canham LT (1991) Nature 353:335CrossRefGoogle Scholar
  5. 5.
    Belyakov VA, Burdov VA, Lockwood R, Meldrum A (2008) Ad Opt Tech 2008:279502Google Scholar
  6. 6.
    Richter H, Wang ZP, Ley L (1981) Solid State Commun 39:625CrossRefGoogle Scholar
  7. 7.
    Campbell IH, Fauchet PM (1986) Solid State Commun 58:739CrossRefGoogle Scholar
  8. 8.
    Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B, Paillard V (2006) Phys Rev B 62:15942CrossRefGoogle Scholar
  9. 9.
    Chaabane N, Suendo V, Vach H, Cabarrocas PR (2006) Appl Phys Lett 88:203111CrossRefGoogle Scholar
  10. 10.
    Iwayama TS, Kurumado N, Hole DE, Townsend PS (1998) J Appl Phys 83:6018CrossRefGoogle Scholar
  11. 11.
    Rimini E (1995) Ion implantation: basic to device fabrication. Kluwer Academics, Dordrecht, p 19CrossRefGoogle Scholar
  12. 12.
    Okamoto K, Scherer A, Kawakami Y (2008) Phys Status Solidi C 5:2822CrossRefGoogle Scholar
  13. 13.
    Sahu G, Joseph B, Lenka HP, Kuiri PK, Pradhan A, Mahapatra DP (2007) Nanotechnology 18:495702CrossRefPubMedGoogle Scholar
  14. 14.
    Sahu G, Lenka HP, Mahapatra DP, Rout B, Mc Daniel F (2010) J Phys: Condens Matter: (Fast Track Comm) 22:072203CrossRefGoogle Scholar
  15. 15.
    Sahu G, Sahu V, Kukreja LM (2014) J Appl Phys 115:083103CrossRefGoogle Scholar
  16. 16.
    Sahu G, Lenka HP, Mahapatra DP, Rout B, Das MP (2012) Adv Nat Sci: Nanosci Nanotechnol 3:025002Google Scholar
  17. 17.
    Sahu G, Sahu V, Kukreja LM (2015) Mater Res Express 2:025008CrossRefGoogle Scholar
  18. 18.
    Ziegler JF, Biersack JP, Littmark U (1995) SRIM 2003 version of TRIM program: the stopping and range of ions in matter. Pergamon, New YorkGoogle Scholar
  19. 19.
    Sahu G, Kumar R, Mahapatra DP (2014) Silicon 6:65CrossRefGoogle Scholar
  20. 20.
    Sahoo S, Dhara S, Mahadevan S, Arora A (2009) J Nanosci Nanotechnol 9:5604CrossRefPubMedGoogle Scholar
  21. 21.
    Sahu G, Mahapatra DP (2011) MRS-proceedings ion beams new applications from mesoscale to nanoscale. In: Marletta G, Ztarhan A, Baglin J, Ila D (eds) Materials research society symposia proceedings, vol 1354Google Scholar
  22. 22.
    Kleovoulou K, Kelires PC (2013) Phys Rev B 88:085424CrossRefGoogle Scholar
  23. 23.
    Tamulevicius S, Pozela I, Puiso J (2004) Mater Sci (MEDZIAGOTYRA) 10:132Google Scholar
  24. 24.
    Wu XL, Xiong SJ, Siu GG, Huang GS, Mei YF, Zhang ZY, Deng SS, Tan C (2003) Phys Rev Lett 91:0157402CrossRefGoogle Scholar
  25. 25.
    Ghodselahi T, Vesaghi MA, Shafiekhani A (2009) J Phys D Appl Phys 42:015308CrossRefGoogle Scholar
  26. 26.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Nano Lett 7:1947CrossRefGoogle Scholar
  27. 27.
    Adachi S, Miyazaki T, Inoue K, Sodezawa S (2007) Jpn J Appl Phys 46:4028CrossRefGoogle Scholar
  28. 28.
    Logothetidis S, Cadona M, Lautenschlager P, Garriga M (1984) Phys Rev B 34:2458CrossRefGoogle Scholar
  29. 29.
    Heitmann J, Muller F, Yi L, Zacharias M, Kovalev D, Eichhorn F (2004) Phys Rev B 69:195309CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Discipline of PhysicsIndian Institute of Technology IndoreSimrolIndia

Personalised recommendations