, Volume 11, Issue 1, pp 543–548 | Cite as

Increasing the Silicon Solar Cell Efficiency with Nanostructured SnO2 Anti-reflecting Coating Films

  • Nadir F. HabubiEmail author
  • Raid A. Ismail
  • Khudheir A. Mishjil
  • Khaleel I. Hassoon
Original Paper


Thin films of fluorine doped nanostructured SnO2 were deposited on quartz glass and single crystal p-n silicon solar cell wafer by chemical spray pyrolysis. XRD measurements reveal that the synthesized films were polycrystalline in nature and showed preferred orientation along (110) plane. The average grain size of films was increased after doping. The morphological properties of films investigated by AFM measurements showed that the root mean square of surface roughness of the film has increased after doping.The optical properties of SnO2 and SnO2:F films were studied by recording the transmittance as a function of wavelength. The optical energy gap of SnO2 and SnO2:F films were found to be 3.62 eV and 3.75 eV, respectively. The efficiency of solar cell has been increased from 4.86% to 5.46% and to 6.06% after depositing with single layer of antireflected SnO2 and SnO2:F films, respectively.


Antireflection coating Silicon solar cell Metal oxide Structural properties Optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Ministry of higher education and scientific research and Mustansiriyah University ( Baghdad -Iraq for their support of the present work.


  1. 1.
    Ramaiah KS, Raja VS (2006) Appl Surf Sci 253:1451CrossRefGoogle Scholar
  2. 2.
    Tesfamichael T, Will G, Colella M (2003) J Bell Nucl Instr Meth Phys Res B 201:581CrossRefGoogle Scholar
  3. 3.
    Ikhmayies SJ, Ahmad-Bitar RN (2011) Phys Scr 84:055801CrossRefGoogle Scholar
  4. 4.
    Zhang B, Tian Y, Zhang JX, Cai W (2011) J Optoelectron Adv Mater 13:89Google Scholar
  5. 5.
    Ikhmayies SJ, Ahmad-Bitar RN (2012) J Semicond 33:083001CrossRefGoogle Scholar
  6. 6.
    de Moure-Flores F, Guillen-Cervantes A, Nieto-Zepeda KE, Quinones-Galvan JG, Hernandez-Hernandez A, de la Olvera M, Melendez-Lira M (2013) Rev Mex Fis 59:335Google Scholar
  7. 7.
    Esteres MC, Gouvea D, Sumodio PTA (2004) Appl Surf Sci 229:24CrossRefGoogle Scholar
  8. 8.
    Kim H, Auyeung RCY, Pique A (2008) Thin Solid Films 516:5052CrossRefGoogle Scholar
  9. 9.
    Ikhmayies SJ, Ahmad-Bitar RN (2008) Appl Surf Sci 255:2627CrossRefGoogle Scholar
  10. 10.
    Santos-Pena J, Brousse T, Sanchez L, Morales J, Schleich DM (2001) J Power Sources 97–98:232CrossRefGoogle Scholar
  11. 11.
    Korotkov RY, Gupta R, Ricou P, Smith R, Silverman G (2008) Thin Solid Films 516:4720CrossRefGoogle Scholar
  12. 12.
    Ayub Durrani SM (2006) Sensors 6:1153CrossRefGoogle Scholar
  13. 13.
    Kim H, Park H, Chang HJ, Jeon H, Hyung HP (2008) Thin Solid Films 517:1072CrossRefGoogle Scholar
  14. 14.
    Khan AF, Mehmood M, Rana AM, Bhatti MT (2009) Appl Surf Sci 255:8562CrossRefGoogle Scholar
  15. 15.
    Elangovan E, Ramamurnthi K (2005) Appl Surf Sci 249:183CrossRefGoogle Scholar
  16. 16.
    Abdullahi S, Mcreh AU, Hamza B, Wara MA, Kamaludden H, Kebbe MA, Monsuorat UF (2015) Int J Recent Res Phys Chem Sci 1:1Google Scholar
  17. 17.
    Korotcenkov G, Brinzari V, Schwank J, DiBattista M, Vasiliev A (2001) Sens Actuators B 77:244CrossRefGoogle Scholar
  18. 18.
    Patil GE, Kajale DD, Shinde SD, Wagh VG, Gaikwad VB, Jain GH (2013) Adv Sens Technol 1:299Google Scholar
  19. 19.
    Thangaraju B (2002) Thin Solid Films 402:71CrossRefGoogle Scholar
  20. 20.
    Rajaram P, Goswami YC, Rajagopalan S, Gupta VC (2002) Mater Lett 54:158CrossRefGoogle Scholar
  21. 21.
    Chestong N, Hall R, Brus LE (1986) J Chem Phys 85:2237CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of EducationMustansiriyah UniversityBaghdadIraq
  2. 2.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations