Silicon

pp 1–7 | Cite as

Fractal Growth of Ferrite Nanoparticles Prepared by Citrate-Gel Auto-Combustion Method

Original Paper
  • 4 Downloads

Abstract

We report a tree fractal growth of ferrite nanoparticles prepared by Citrate-Gel Auto-Combustion method. We compared the growth pattern of CuFe2O4, Cr2FeO4, CdFe2O4, MgFe2O4, and Li2Fe3O5. The ferrite 3D growth was found to follow Family-Vicsek fractal growth in which the next added particle is looking for the best 3D orientation to minimize its surface free energy. The nanoparticles position in the sites of the growing tree forms a pattern that depends on the temperature, particle size, the orientation of the first seed particle and the particle to particle interaction forces. The results showed that the fractal arrangement is more preferred in the thermal growth of nanoparticles.

Keywords

Fractal growth Nanoparticles Ferrite synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are very thankful for Dr. Emad El-Menyawy, Solid State Department, National Research Center, Giza , Egypt for fruitful discussion.

References

  1. 1.
    Abdellatif M, Abdelrasoul GN, Scarpellini A, Marras S, Diaspro A (2015) Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics. J Colloid Interface Sci, 458.  https://doi.org/10.1016/j.jcis.2015.07.055
  2. 2.
    Abdellatif M, Song JD, Choi WJ, Cho NK, Lee JI (2010) Evidence of correlated electron hole pairs in dots in asymmetric quantum well structures. J Phys Conf Ser, 244.  https://doi.org/10.1088/1742-6596/245/1/012050
  3. 3.
    Abdellatif M, Abdelrasoul GN, Salerno M, Liakos I, Scarpellini A, Marras S, Diaspro A (2016) Fractal analysis of inter-particle interaction forces in gold nanoparticle aggregates, Colloids Surfaces A Physicochem. Eng Asp 497:225–232.  https://doi.org/10.1016/j.colsurfa.2016.03.013 CrossRefGoogle Scholar
  4. 4.
    Sederberg S, Elezzabi AY (2011) Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. Opt Express 19:10456.  https://doi.org/10.1364/OE.19.010456 CrossRefGoogle Scholar
  5. 5.
    Abdellatif M, Salerno M, Abdelrasoul GN, Liakos I, Scarpellini A, Marras S, Diaspro A (2016) Effect of Anderson localization on light emission from gold nanoparticle aggregates, Beilstein. J Nanotechnol 7:2013–2022.  https://doi.org/10.3762/bjnano.7.192 Google Scholar
  6. 6.
    abdellatif MH Fractal Phenomena In The Nanoparticles Aggregation / 978-3-330-04153-0/9783330041530/3330041536,LaPLambert Academic Publishing, 2017. https://www.lap-publishing.com/catalog/details//store/tr/book/978-3-330-04153-0/fractal-phenomena-in-the-nanoparticles-aggregation (accessed March 2, 2017)
  7. 7.
    Mandelbrot BB (1983) The fractal geometry of nature. Am J Phys 51:286.  https://doi.org/10.1119/1.13295 CrossRefGoogle Scholar
  8. 8.
    Meiwes-Broer K-H (2000) Metal clusters at surfaces. Springer Berlin Heidelberg, Berlin Heidelberg.  https://doi.org/10.1007/978-3-642-57169-5 CrossRefGoogle Scholar
  9. 9.
    Bréchignac C., Houdy P., Lahmani M. (eds) (2007) Nanomaterials and nanochemistry. Springer Berlin Heidelberg, Berlin Heidelberg.  https://doi.org/10.1007/978-3-540-72993-8
  10. 10.
    Family F (1996) Fractal concepts in surface growth. J Stat Phys 83:1255–1259.  https://doi.org/10.1007/BF02179563 CrossRefGoogle Scholar
  11. 11.
    Wu KH, Ting TH, Li MC, Ho WD (2006) Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J Magn Magn Mater 298:25–32.  https://doi.org/10.1016/j.jmmm.2005.03.008 CrossRefGoogle Scholar
  12. 12.
    Kumar ER, Kamzin AS, Prakashc T (2015) Effect of particle size on structural, magnetic and dielectric properties of manganese substituted nickel ferrite nanoparticles. J Magn Magn Mater 378:389–396.  https://doi.org/10.1016/J.JMMM.2014.11.019 CrossRefGoogle Scholar
  13. 13.
    Sutka A, Mezinskis G (2012) Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141.  https://doi.org/10.1007/s11706-012-0167-3 CrossRefGoogle Scholar
  14. 14.
    Hwang C-C, Tsai J-S, Huang T-H (2005) Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater Chem Phys 93:330–336.  https://doi.org/10.1016/j.matchemphys.2005.03.056 CrossRefGoogle Scholar
  15. 15.
    Ahmed TT, Rahman IZ, Rahman MA (2004) Study on the properties of the copper substituted NiZn ferrites. J Mater Process Technol 153–154:797–803.  https://doi.org/10.1016/j.jmatprotec.2004.04.188 CrossRefGoogle Scholar
  16. 16.
    Mouallem-Bahout M, Bertrand S, Peña O (2005) Synthesis and characterization of Zn1-xNixFe2O4 spinels prepared by a citrate precursor. J Solid State Chem 178:1080–1086.  https://doi.org/10.1016/j.jssc.2005.01.009 CrossRefGoogle Scholar
  17. 17.
    Ahmed MA, Afify HH, El Zawawia IK, Azab AA (2012) Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magn Magn Mater 324:2199–2204.  https://doi.org/10.1016/j.jmmm.2012.02.025 CrossRefGoogle Scholar
  18. 18.
    Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12:44–50.  https://doi.org/10.1016/j.cossms.2008.12.002 CrossRefGoogle Scholar
  19. 19.
    Randhawa BS, Dosanjh HS, Kumar N (2007) Synthesis of lithium ferrite by precursor and combustion methods: A comparative study. J Radioanal Nucl Chem 274:581–591.  https://doi.org/10.1007/s10967-006-6924-y CrossRefGoogle Scholar
  20. 20.
    Sutka A, Gross KA, Mezinskis G, Bebris G, Knite M (2011) The effect of heating conditions on the properties of nano- and microstructured Ni–Zn ferrite. Phys Scr 83:25601.  https://doi.org/10.1088/0031-8949/83/02/025601 CrossRefGoogle Scholar
  21. 21.
    Nayak PK (2008) Synthesis and characterization of cadmium ferrite. Mater Chem Phys 112:24–26.  https://doi.org/10.1016/j.matchemphys.2008.05.018 CrossRefGoogle Scholar
  22. 22.
    Shobana MK, Rajendran V, Jeyasubramanian K, Suresh Kumar N (2007) Preparation and characterisation of NiCo ferrite nanoparticles. Mater Lett 61:2616–2619.  https://doi.org/10.1016/j.matlet.2006.10.008 CrossRefGoogle Scholar
  23. 23.
    Mallapur MM, Shaikh PA, Kambale RC, Jamadar HV, Mahamuni PU, Chougule BK (2009) Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. J Alloys Compd 479:797–802.  https://doi.org/10.1016/j.jallcom.2009.01.142 CrossRefGoogle Scholar
  24. 24.
    Yue Z, Guo W, Zhou J, Gui Z, Li L (2004) Synthesis of nanocrystilline ferrites by sol–gel combustion process: the influence of pH value of solution. J Magn Magn Mater 270:216–223.  https://doi.org/10.1016/j.jmmm.2003.08.025 CrossRefGoogle Scholar
  25. 25.
    Azadmanjiri J, Salehani HK, Barati MR, Farzan F (2007) Preparation and electromagnetic properties of Ni1-xCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Mater Lett 61:84–87.  https://doi.org/10.1016/j.matlet.2006.04.011 CrossRefGoogle Scholar
  26. 26.
    Witten T, Sander L (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403.  https://doi.org/10.1103/PhysRevLett.47.1400 CrossRefGoogle Scholar
  27. 27.
    Fernández-Martínez M, Sánchez-Granero MA (2014) Fractal dimension for fractal structures. Topol Appl 163:93–111.  https://doi.org/10.1016/j.topol.2013.10.010 CrossRefGoogle Scholar
  28. 28.
    Mandelbrot BB (2006) Self-affine fractals and fractal dimension. Phys Scr 32:257–260.  https://doi.org/10.1088/0031-8949/32/4/001 CrossRefGoogle Scholar
  29. 29.
    Grassberger P (1981) On the Hausdorff dimension of fractal attractors. J Stat Phys 26:173–179.  https://doi.org/10.1007/BF01106792 CrossRefGoogle Scholar
  30. 30.
    Viswanathan B, Murthy VRK (1990) Ferrite materials?: science and technology, Narosa Pub HouseGoogle Scholar
  31. 31.
    Snelling EC (1969) Soft ferrites: properties and applications, IliffeGoogle Scholar
  32. 32.
    Abdellatif Mohamed MA Ferrites, Theory and Applications, 978-3-330-07427-9, 3330074272 ,9783330074279 by Mohamed Abdellatif, Aisha Moustafa, LAP LAMPERT Academic publishing, 2017. https://www.morebooks.de/store/gb/book/ferrites,-theory-and-applications/isbn/978-3-330-07427-9 (accessed May 26, 2017)
  33. 33.
    Kumar ER, Reddy PSP, Devi GS (2016) Structural and Gas Sensing Properties of Mn Substituted ZnFe<SUB>2</SUB>O<SUB>4</SUB> Nanoparticles by Auto Combustion and Evaporation Method. J Adv Phys 5:230–235.  https://doi.org/10.1166/jap.2016.1259 CrossRefGoogle Scholar
  34. 34.
    Sekhon JS, Verma S (2011) Optimal Dimensions of Gold Nanorod for Plasmonic Nanosensors. Plasmonics 6:163–169.  https://doi.org/10.1007/s11468-010-9182-3 CrossRefGoogle Scholar
  35. 35.
    Shannon RD (1976) IUCr, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767.  https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  36. 36.
    Family F, Vicsek T (1985) Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A Math Gen 18:L75–L81.  https://doi.org/10.1088/0305-4470/18/2/005 CrossRefGoogle Scholar
  37. 37.
    Kamzin AS, Ranjith Kumar E, Ramadevi P, Selvakumar C (2017) The properties of Mn–CuFe2O4 spinel ferrite nanoparticles under various synthesis conditions. Phys Solid State 59:1841–1851.  https://doi.org/10.1134/S1063783417090128 CrossRefGoogle Scholar
  38. 38.
    Verma S, Karande J, Patidar A, Joy PA (2005) Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Mater Lett 59:2630–2633.  https://doi.org/10.1016/j.matlet.2005.04.005 CrossRefGoogle Scholar
  39. 39.
    Salunkhe AB, Khot VM, Phadatare MR, Pawar SH (2012) Combustion synthesis of cobalt ferrite nanoparticles—Influence of fuel to oxidizer ratio. J Alloys Compd 514:91–96.  https://doi.org/10.1016/j.jallcom.2011.10.094 CrossRefGoogle Scholar
  40. 40.
    Kumar ER, Reddy PSP, Devic GS, Sathiyaraj S (2016) Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles. J Magn Magn Mater 398:281–288.  https://doi.org/10.1016/J.JMMM.2015.09.018 CrossRefGoogle Scholar
  41. 41.
    Abdellatif M, El-Komy GM, Azab AA, Moustafa AM (2017) Oscillator strength and dispersive energy of dipoles in ferrite thin film. Mater Res Express 4:76410.  https://doi.org/10.1088/2053-1591/aa7e57 CrossRefGoogle Scholar
  42. 42.
    Abdellatif M, Azab AA, Salerno M (2018) Effect of rare earth doping on the vibrational spectra of spinel Mn-Cr ferrite. Mater Res Bull 97:260–264.  https://doi.org/10.1016/j.materresbull.2017.09.012 CrossRefGoogle Scholar
  43. 43.
    Abdellatif MH, El-Komy GM, Azab AA, Salerno M (2018) Crystal field distortion of La3 + ion-doped Mn-Cr ferrite. J Magn Magn Mater 447:15–20.  https://doi.org/10.1016/J.JMMM.2017.09.040 CrossRefGoogle Scholar
  44. 44.
    Abdellatif M, Azab AA, Moustafa AM (2017) Dielectric spectroscopy of localized electrical charges in ferrite thin film. J Electron Mater, pp 1–7.  https://doi.org/10.1007/s11664-017-5782-4
  45. 45.
    Intartaglia R, Rodio M, Abdellatif M, Prato M, Salerno M (2016) Extensive characterization of oxide-coated colloidal gold nanoparticles synthesized by laser ablation in liquid. Mater 9:775.9. 775  https://doi.org/10.3390/MA9090775 CrossRefGoogle Scholar
  46. 46.
    Abdellatif M, Song JD, Choi WJ, Cho NK (2012) In/Ga inter-diffusion in InAs quantum dot in InGaAs/GaAs asymmetric quantum well. J Nanosci Nanotechnol 12:5774–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solid State Physics Department, Physics Division, National Research CenterDokkiEgypt

Personalised recommendations