, Volume 11, Issue 1, pp 533–542 | Cite as

Finite Elements Method Coupled with Delaunay Triangulation Method Applied on a Silicon Corner Diode

  • Mohammed Azzedine
  • Macho AnaniEmail author
  • Zouaoui Chama
  • Sara Lebid
  • Christian Mathieu
Original Paper


This work considers a two dimensional numerical device simulation system using a novel digitizing scheme based on finite elements coupled with the Delaunay triangulation method which allowed an optimal mesh involved in nonrectangular devices as a corner diode. A grid was generated automatically according to the specified device geometry standing on the Delaunay triangulation process. The solution of the problem consists in the resolution of three strong nonlinear partial differential equations (PDE) which are, in occurrence, two dimensional Poisson and continuity equations. Modeled voltage, free carriers distribution and I-V characteristics were extracted when the PN junction resolution was based on second-order Bezier curves. The results are presented using a Delaunay triangulation meshing mathematical tool.


Delaunay triangulation Finite elements method Silicon corner diode Bezier curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schroeder WJ, Shephard MS (1988) Geometry-based fully automatic mesh generation and the Delaunay triangulation. Int J Numer Methods Eng 26:2503–2515CrossRefGoogle Scholar
  2. 2.
    Baker T (1992) Mesh generation for the computation of flowfields over complex aerodynamics shapes. Comput Math Appl 24(5/6):103–127CrossRefGoogle Scholar
  3. 3.
    Weatherill NP (1992) Delaunay triangulation in computational fluid dynamics. Comput Math Appl 24 (5/6):129–150CrossRefGoogle Scholar
  4. 4.
    De Floriani L, Puppo E (1992) An online algorithm for constrained Delaunay triangulation. CVGIP: Graphical models and image processing 54(3):290–300Google Scholar
  5. 5.
    Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral mesh generation. Int J Numer Methods Eng 41:915–934CrossRefGoogle Scholar
  6. 6.
    Fang TP, Piegl LA (1992) Algorithm for Delaunay triangulation and convex-hull computation using a sparse matrix. Comput Aided Des 24(8):425–436CrossRefGoogle Scholar
  7. 7.
    Zheng Y, Lewis RW, Gethin DT (1996) Three dimensional unstructured mesh generation: part 1. Fundamental aspects of triangulation and point creation. Comput Methods Appl Mech Eng 134:249–268CrossRefGoogle Scholar
  8. 8.
    Sugihara K, Inagaki H (1995) Why is the 3D Delaunay triangulation difficult to construct. Inf Proc Lett 54:275–280CrossRefGoogle Scholar
  9. 9.
    Lewis RW, Zheng Y, Usmani AS (1995) Aspects of adaptive mesh generation based on domain decomposition and Delaunay triangulation. Finite Elem Anal Des 20:47–70CrossRefGoogle Scholar
  10. 10.
    Weatherill NE, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Methods Eng 37:2005–2039CrossRefGoogle Scholar
  11. 11.
    Sze SM (1981) Physics of semiconductor devices. Wiley, New York. ISBN 0471-09837-XGoogle Scholar
  12. 12.
    Binetti S, le Donne A, Sassela A (2014) Photoluminescence and infrared spectroscopy for the study of defects in Silicon for photovoltaic applications. Sol Energy Mater Sol Cells 130:696–703CrossRefGoogle Scholar
  13. 13.
    Jay F, Muñoz D, Desrues T, Pihan E, Amaral de Oliveira V, Enjalbert N, Jouini A (2014) Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5% efficiency. Sol Energy Mater Sol Cells 130:690–695CrossRefGoogle Scholar
  14. 14.
    Jeyakumar R, Maiti TK, Verma A (2014) Two-dimensional simulation studies on high-efficiency point contact back heterojunction (a-Si:H/c-Si) solar cells. Solar Energy 105:109–115CrossRefGoogle Scholar
  15. 15.
    Li Z, Wang W, Zhao S (2015) Mn-Mn interaction induced metallic or insulating character of doped silicon: an ab-initio study. Comput Mater Sci 97:186–192CrossRefGoogle Scholar
  16. 16.
    Nguyen HTT, Hoang VV, Minh LNT (2014) Melting of crystalline silicon thin films. Comput Mater Sci 89:97–101CrossRefGoogle Scholar
  17. 17.
    Haug H, Kimmerley A, Greulich J, Wolf A, Marstein ES (2014) Implementation of Fermi-Dirac statistics and advanced models in PC1D for precise simulations of silicon solar cells. Sol Energy Mater Sol Cells 131:30–36CrossRefGoogle Scholar
  18. 18.
    Schindler F, Forster M, Broisch J, Schön J, Giesecke J, Rein S, Warta W, Schubert MC (2014) Sol Energy Mater Sol Cells 131:92–99CrossRefGoogle Scholar
  19. 19.
    Feldmann F, Simon M, Bivour M, Reichel C, Hermle M, Glunz SW (2014) Efficient carrier selective p- and n-contacts for Si solar cells. Sol Energy Mater Sol Cells 131:100–104CrossRefGoogle Scholar
  20. 20.
    Shewchuck JR (2002) Comput Geom 22:21–74CrossRefGoogle Scholar
  21. 21.
    Anani M, Mathieu C, Khadraoui M, Chama Z, Lebid S, Amar Y (2009) High-grade efficiency III-Nitrides semiconductor solar cell. Microchem J 40:427–434Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mohammed Azzedine
    • 1
  • Macho Anani
    • 2
    Email author
  • Zouaoui Chama
    • 2
  • Sara Lebid
    • 2
  • Christian Mathieu
    • 3
  1. 1.University AbdelHamid Ibn Badis of MostaganemMostaganemAlgeria
  2. 2.Faculty of Electrical EngineeringUniversity Djillali Liabes of Sidi Bel AbbesSidi Bel AbbesAlgeria
  3. 3.Faculté des Sciences Jean PerrinUniversité d’ArtoisLensFrance

Personalised recommendations