In-vivo-Aktivierung von regenerativen Zellen im Fettgewebe für die Gesichtsrejuvenation
- 5 Downloads
Zusammenfassung
Positive Effekte der extrakorporalen Stoßwellentherapie (ESWT) konnten zuvor auf Wundheilung, Nervenregeneration und Gefäßneubildung bewiesen werden. In dieser Studie haben wir die radiale ESWT zur Gesichtsrejuvenation untersucht, wobei bereits die direkte ESWT-Behandlung erste Wirkung gezeigt hat. Für eine gesteigerte Volumisierung wurde zusätzlich Eigenfett mit ESWT-Vorbehandlung des Spender-und Empfängerareals appliziert. Die Vorbehandlung des Empfängerareals mit ESWT ist für das Anwachsen des Transplantats notwendig, da mittels ESWT die Angiogenese und somit ein erfolgreicher Einbau der Grafts im Zielgewebe erfolgen kann.
Schlüsselwörter
Stromale vaskuläre Fraktion Extrakorporale Stoßwellentherapie Transplantat Angiogenese VolumisierungIn vivo activation of regenerative cells in adipose tissue for facial rejuvenation
Abstract
Positive effects of extracorporeal shockwave therapy (ESWT) on wound healing, nerve regeneration and neovascularization could previously be proven. In this study the radial ESWT was examined for facial rejuvenation strategies, where direct ESWT treatment on the face already showed an initial effect. For increased volumization, autologous fat grafts were additionally applied with ESWT pretreatment of the donor and recipient areas. Pretreatment of the recipient site with ESWT is essential for graft incorporation since ESWT is known to promote angiogenesis that is required for successful graft integration into the target tissue.
Keywords
Stromal vascular fraction Extracorporeal shockwave therapy Transplant Angiogenesis VolumizationNotes
Einhaltung ethischer Richtlinien
Interessenkonflikt
M. Sandhofer, M. Barsch, C. Wurzer, C. Lindner und E. Priglinger geben an, dass kein Interessenkonflikt besteht.
Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.
Literatur
- 1.Amar RE, Fox DM (2011) The facial autologous muscular injection (FAMI) procedure: an anatomically targeted deep multiplane autologous fat-grafting technique using principles of facial fat injection. Aesthetic Plast Surg 35:502–510CrossRefGoogle Scholar
- 2.Angehrn F, Kuhn C, Voss A (2007) Can cellulite be treated with low-energy extracorporeal shock wave therapy? Clin Interv Aging 2:623–630CrossRefGoogle Scholar
- 3.Barsch M, Sandhofer M, Wurzer C et al (2019) Stammzellgewinnung aus Eigenfett, Abnahmetechnik und deren Optimierung. J Ästhet Chir 12 (submitted). https://doi.org/10.1007/s12631-019-0172-9 CrossRefGoogle Scholar
- 4.Bateman ME, Strong AL, Gimble JM et al (2018) Using fat to fight disease: a systematic review of non-homologous adipose-derived stromal/stem cell therapies. Stem Cells. https://doi.org/10.1002/stem.2847 CrossRefPubMedGoogle Scholar
- 5.Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648CrossRefGoogle Scholar
- 6.Dong Z, Peng Z, Chang Q et al (2015) The angiogenic and adipogenic modes of adipose tissue after free fat grafting. Plast Reconstr Surg 135:556e–567eCrossRefGoogle Scholar
- 7.Eto H, Kato H, Suga H et al (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg 129:1081–1092CrossRefGoogle Scholar
- 8.Holnthoner W, Bonstingl C, Hromada C et al (2017) Endothelial cell-derived extracellular vesicles size-dependently exert Procoagulant activity detected by Thromboelastometry. Sci Rep 7:3707CrossRefGoogle Scholar
- 9.Knobloch K (2018) ESWT in Aesthetic Medicine, Burns & Dermatology (Stosswellentherapie in der Praxis). LEVEL10, HeilbronnGoogle Scholar
- 10.Knobloch K, Joest B, Kramer R et al (2013) Cellulite and focused extracorporeal shockwave therapy for non-invasive body contouring: a randomized trial. Dermatol Ther (Heidelb) 3:143–155CrossRefGoogle Scholar
- 11.Kronsteiner B, Wolbank S, Peterbauer A et al (2011) Human mesenchymal stem cells from adipose tissue and amnion influence T‑cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 20:2115–2126CrossRefGoogle Scholar
- 12.Marangoni RG, Korman BD, Wei J et al (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67:1062–1073CrossRefGoogle Scholar
- 13.Mittermayr R, Hartinger J, Antonic V et al (2011) Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 253:1024–1032CrossRefGoogle Scholar
- 14.Priglinger E, Maier J, Chaudary S et al (2018) Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2665 CrossRefPubMedGoogle Scholar
- 15.Priglinger E, Sandhofer M, Peterbauer A et al (2017) Extracorporeal shock wave therapy in situ—novel approach to obtain an activated fat graft. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2467 CrossRefPubMedGoogle Scholar
- 16.Priglinger E, Schuh C, Steffenhagen C et al (2017) Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy 19:1079–1095CrossRefGoogle Scholar
- 17.Rohringer S, Hofbauer P, Schneider KH et al (2014) Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells. Angiogenesis 17:921–933CrossRefGoogle Scholar
- 18.Rohringer S, Holnthoner W, Hackl M et al (2014) Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS ONE 9:e114806CrossRefGoogle Scholar
- 19.Sandhofer M, Schauer P (2015) Nischenspezifischer Fetttransfer im Gesicht. J Ästhet Chir 8:129–132CrossRefGoogle Scholar
- 20.Sandhofer M, Schauer P, Pilsl U et al (2018) Die Fascia glutealis als Mittler der muskulokutanen Dynamik der Gesäßregion. J Ästhet Chir. https://doi.org/10.1007/s12631-018-0127-6 CrossRefGoogle Scholar
- 21.Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079CrossRefGoogle Scholar
- 22.Schuh CM, Hercher D, Stainer M et al (2016) Extracorporeal shockwave treatment: a novel tool to improve Schwann cell isolation and culture. Cytotherapy 18:760–770CrossRefGoogle Scholar
- 23.Siems W, Grune T, Voss P et al (2005) Anti-fibrosclerotic effects of shock wave therapy in lipedema and cellulite. Biofactors 24:275–282CrossRefGoogle Scholar
- 24.Toldt C (1870) Contribution to the histology and physiology of adipose tissue. Sitzber Akad Wiss Wien Math Naturwiss Kl 62:445Google Scholar
- 25.Van Dongen JA, Tuin AJ, Spiekman M et al (2017) Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2407 CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Wolbank S, Peterbauer A, Fahrner M et al (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183CrossRefGoogle Scholar
- 27.Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatologic Surg 34:1178–1185 (official publication for American Society for Dermatologic Surgery [et al.])Google Scholar
- 28.Zimmerlin L, Donnenberg VS, Pfeifer ME et al (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77:22–30PubMedPubMedCentralGoogle Scholar