Advertisement

Regenerative Zellen in der ästhetischen und rekonstruktiven Medizin

  • Eleni PriglingerEmail author
  • Heinz Redl
Übersichten
  • 3 Downloads

Zusammenfassung

Fettgewebe ist eine attraktive und reichlich verfügbare Quelle an regenerativen Zellen, die für die ästhetische und rekonstruktive Medizin vielversprechend sind. Um eine für den Patienten sichere und sterile klinische Applikation mit Fettgewebe und/oder regenerativen Zellen zu gewährleisten, müssen alle Anforderungen der zuständigen regulatorischen Gesundheitsbehörde erfüllt werden. Obwohl Fetttransplantationen bezüglich Gewinnung, Aufbereitung und Verabreichung kontinuierlich weiterentwickelt werden, ist man mit Hindernissen wie Fettresorption und der geringen Stabilität der Transplantate konfrontiert. Um diese Nachteile zu überwinden, ist die Bildung von neuen Blutgefäßen Voraussetzung, die durch die zusätzliche Verwendung von regenerativen Zellen verbessert werden kann. Zusätzlich kann der Einsatz von mechanischen Methoden, wie z. B. der Stoßwellentherapie, zu einer Aktivierung und Optimierung des Transplantates führen.

Schlüsselwörter

Fettgewebe Adulte Stammzellen Klinische Applikation Autolog Homolog 

Regenerative cells in aesthetic and reconstructive medicine

Abstract

Adipose tissue is an attractive and abundant source of regenerative cells that are promising for aesthetic and reconstructive medicine. In order to ensure a safe and sterile clinical application for patients when using adipose tissue and/or regenerative cells, all requirements of the responsible regulatory health authority must be fulfilled. Although fat grafting has been continuously improved in terms of harvesting, processing and administration it faces drawbacks, such as fat resorption and poor graft stability. To overcome these drawbacks, the formation of new blood vessels is a prerequisite, which can be improved by the additional use of regenerative cells. In addition, the use of mechanical methods, such as shock wave therapy, can lead to activation and optimization of the transplant.

Keywords

Adipose tissue Adult stem cells Clinical application Autologous Homologous 

Notes

Interessenkonflikt

E. Priglinger und H. Redl geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Aarya Hari SG (2013) Production of good manufacturing practice grade equine adiposederived mesenchymal stem cells for therapeutic use. J Stem Cell Res Ther 3:154 03:2157–7633Google Scholar
  2. 2.
    Amirkhani MA, Mohseni R, Soleimani M et al (2016) A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue. Bioimpacts 6:99–104CrossRefGoogle Scholar
  3. 3.
    Aust L, Devlin B, Foster SJ et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14CrossRefGoogle Scholar
  4. 4.
    Bateman ME, Strong AL, Gimble JM et al (2018) Using fat to fight disease: a systematic review of non-homologous adipose-derived stromal/stem cell therapies. Stem Cells 36.  https://doi.org/10.1002/stem.2847 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bora P, Majumdar AS (2017) Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 8:145CrossRefGoogle Scholar
  6. 6.
    Calabrese C, Orzalesi L, Casella D et al (2009) Breast reconstruction after nipple/areola-sparing mastectomy using cell-enhanced fat grafting. Ecancermedicalscience 3:116PubMedPubMedCentralGoogle Scholar
  7. 7.
    Coleman WP 3rd, Glogau RG, Klein JA et al (2001) Guidelines of care for liposuction. J Am Acad Dermatol 45:438–447CrossRefGoogle Scholar
  8. 8.
    Elster EA, Stojadinovic A, Forsberg J et al (2010) Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 24:133–141CrossRefGoogle Scholar
  9. 9.
    Eudralex (2010) Clinical trial guidelines.Google Scholar
  10. 10.
    Eudralex (2015) Good manufacturing practice (GMP)Google Scholar
  11. 11.
    European Medicines Agency (2012) Scientific recommendation on classification of advanced therapy medicinal products. Article 17 – Regulation (EC) No 1394/2007. In:Google Scholar
  12. 12.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403PubMedGoogle Scholar
  13. 13.
    Furia JP, Juliano PJ, Wade AM et al (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg Am 92:846–854CrossRefGoogle Scholar
  14. 14.
    Garza RM, Paik KJ, Chung MT et al (2014) Studies in fat grafting: Part III. Fat grafting irradiated tissue—improved skin quality and decreased fat graft retention. Plast Reconstr Surg 134:249–257CrossRefGoogle Scholar
  15. 15.
    Gentile P, Orlandi A, Scioli MG et al (2012) A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 1:341–351CrossRefGoogle Scholar
  16. 16.
    Hagman DK, Kuzma JN, Larson I et al (2012) Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. J Immunol Methods 386:50–59CrossRefGoogle Scholar
  17. 17.
    Harwood HJ Jr. (2012) The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 63:57–75CrossRefGoogle Scholar
  18. 18.
    Holfeld J, Tepekoylu C, Reissig C et al (2016) Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res 109:331–343CrossRefGoogle Scholar
  19. 19.
    Jiang A, Li M, Duan W et al (2015) Improvement of the survival of human autologous fat transplantation by adipose-derived stem-cells-assisted lipotransfer combined with bFGF. ScientificWorldJournal 2015 (Article ID 968057).  https://doi.org/10.1155/2015/968057
  20. 20.
    Jiang T, Xu G, Wang Q et al (2017) In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death Dis 8:e2851CrossRefGoogle Scholar
  21. 21.
    Klingemann H, Matzilevich D, Marchand J (2008) Mesenchymal stem cells – sources and clinical applications. Transfus Med Hemother 35:272–277CrossRefGoogle Scholar
  22. 22.
    Liao HT, Marra KG, Rubin JP (2014) Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev 20:267–276CrossRefGoogle Scholar
  23. 23.
    Luo S, Hao L, Li X et al (2013) Adipose tissue-derived stem cells treated with estradiol enhance survival of autologous fat transplants. Tohoku J Exp Med 231:101–110CrossRefGoogle Scholar
  24. 24.
    Mafi R, Hindocha S, Mafi P et al (2011) Sources of adult mesenchymal stem cells applicable for musculoskeletal applications – a systematic review of the literature. Open Orthop J 2(5 Suppl):242–248CrossRefGoogle Scholar
  25. 25.
    Maioli M, Rinaldi S, Santaniello S et al (2014) Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency. Cell Transplant 23:1489–1500CrossRefGoogle Scholar
  26. 26.
    Mcintosh K, Zvonic S, Garrett S et al (2006) The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 24:1246–1253CrossRefGoogle Scholar
  27. 27.
    Mittermayr R, Antonic V, Hartinger J et al (2012) Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen 20:456–465PubMedGoogle Scholar
  28. 28.
    Nguyen A, Guo J, Banyard DA et al (2016) Stromal vascular fraction: a regenerative reality? Part 1: current concepts and review of the literature. J Plast Reconstr Aesthetic Surg : Jpras 69:170–179CrossRefGoogle Scholar
  29. 29.
    Oberbauer E, Steffenhagen C, Wurzer C et al (2015) Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen (Lond) 4:7Google Scholar
  30. 30.
    Pan Q, Fouraschen SM, De Ruiter PE et al (2014) Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp Biol Med (Maywood) 239:105–115CrossRefGoogle Scholar
  31. 31.
    Priglinger E, Maier J, Chaudary S et al (2018) Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application. J Tissue Eng Regen Med.  https://doi.org/10.1002/term.2665 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Priglinger E, Schuh C, Steffenhagen C et al (2017) Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy 19:1079–1095CrossRefGoogle Scholar
  33. 33.
    Saggini R, Figus A, Troccola A et al (2008) Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol 34:1261–1271CrossRefGoogle Scholar
  34. 34.
    Salgarello M, Visconti G, Farallo E (2010) Autologous fat graft in radiated tissue prior to alloplastic reconstruction of the breast: report of two cases. Aesthetic Plast Surg 34:5–10CrossRefGoogle Scholar
  35. 35.
    Schaden W, Mittermayr R, Haffner N et al (2015) Extracorporeal shockwave therapy (ESWT)—First choice treatment of fracture non-unions? Int J Surg 24:179–183CrossRefGoogle Scholar
  36. 36.
    Schaden W, Thiele R, Kolpl C et al (2007) Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res 143:1–12CrossRefGoogle Scholar
  37. 37.
    Sensebe L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4:66CrossRefGoogle Scholar
  38. 38.
    Serra-Mestre JM, Serra-Renom JM, Martinez L et al (2014) Platelet-rich plasma mixed-fat grafting: a reasonable prosurvival strategy for fat grafts? Aesthetic Plast Surg 38:1041–1049CrossRefGoogle Scholar
  39. 39.
    Wang Y, Huang YY, Wang Y et al (2016) Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: role of intracellular calcium and light-gated ion channels. Sci Rep 6:33719CrossRefGoogle Scholar
  40. 40.
    Weihs AM, Fuchs C, Teuschl AH et al (2014) Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem 289:27090–27104CrossRefGoogle Scholar
  41. 41.
    Yoshimura K, Sato K, Aoi N et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55CrossRefGoogle Scholar
  42. 42.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Ludwig Boltzmann Institut für experimentelle und klinische TraumatologieAUVA ForschungszentrumWienÖsterreich
  2. 2.Österreichischer Cluster für Geweberegeneration WienÖsterreich

Personalised recommendations