Advertisement

Perioperative multi-system optimization protocol in elderly hip fracture patients: a randomized-controlled trial

  • Sebastian Schmid
  • Manfred Blobner
  • Brigitte Haas
  • Martin Lucke
  • Markus Neumaier
  • Aida Anetsberger
  • Bettina JungwirthEmail author
Reports of Original Investigations

Abstract

Purpose

Hip fractures in elderly patients are associated with increased postoperative morbidity and mortality. We evaluated whether a perioperative multi-system optimization protocol can reduce postoperative complications in these patients.

Methods

Immediately after diagnosis of hip fracture, patients ≥ 60 yr were randomized to an intervention or control group. Patients in the intervention group were admitted to our postanesthesia care unit where they were treated with goal-directed hemodynamic management, optimized pain therapy, oxygen therapy, and optimized nutrition. Patients in the control group were managed according to our usual standard of care on a regular ward. Postoperative complications during hospital stay included pre-determined cardiovascular, respiratory, neurologic, renal, or surgical events.

Results

The incidence of at least one postoperative complication (primary outcome) was seen in 32 of 65 (49%) controls compared with 24 of 62 (39%) in the intervention group (relative risk [RR], 0.79; 95% confidence interval [CI], 0.53 to 1.17; P = 0.23). The secondary unadjusted outcomes showed that patients in the intervention group received more Ringer’s acetate compared with controls (median difference, 1.3 L; 95% CI, 0.6 to 2.1 L; P < 0.001), had more frequently a mean arterial pressure > 70 mmHg (57% control vs 75% intervention; median percentage difference, 16%; 95% CI, 7 to 25%; P = 0.001), better pain control (numeric rating scale < 4 at all postoperative measurements; 25% control vs 81% intervention; RR, 0.26; 95% CI, 0.15 to 0.43; P < 0.001), and possibly a lower incidence of acute renal failure (RR, 0.37; 95% CI, 0.14 to 0.98; P = 0.04).

Conclusions

The implementation of a perioperative multi-system optimization protocol algorithm did not significantly reduce the risk of postoperative complications. Nevertheless, we likely over-estimated the potential treatment effect in our study design and thus were under-powered to show an effect.

Trial registration

Clinicaltrials.gov (NCT01673776). Registered 23 August, 2012.

Un protocole d’optimisation périopératoire multisystémique pour les patients âgés subissant une fracture de la hanche: une étude randomisée contrôlée

Résumé

Objectif

Chez les patients âgés, les fractures de la hanche sont associées à une augmentation de la morbidité et de la mortalité postopératoires. Nous avons tenté de déterminer si un protocole d’optimisation périopératoire multisystémique pourrait réduire les complications postopératoires chez ces patients.

Méthode

Immédiatement après avoir reçu un diagnostic de fracture de la hanche, les patients ≥ 60 ans ont été randomisés à une intervention ou au groupe témoin. Les patients du groupe intervention ont été admis à notre salle de réveil, où ils ont bénéficié d’une prise en charge avec un traitement à visée hémodynamique, d’un traitement contre la douleur optimisé, d’oxygénothérapie, et d’une nutrition optimisée. Les patients du groupe témoin ont été pris en charge selon notre norme de soins habituelle dans un département de soins courants. Les complications postopératoires pendant le séjour à l’hôpital comprenaient des événements cardiovasculaires, respiratoires, neurologiques, rénaux et chirurgicaux déterminés à l’avance.

Résultats

L’incidence d’au moins une complication postopératoire (critère d’évaluation principal) a été observée chez 32 des 65 (49 %) patients du groupe témoin, par rapport à 24 des 62 (39 %) patients du groupe intervention (risque relatif [RR], 0,79; intervalle de confiance [IC] à 95 %, 0,53 à 1,17; P = 0,23). Les critères secondaires non ajustés ont démontré que les patients du groupe intervention ont reçu plus de solution d’acétate Ringer que les patients du groupe témoin (différence médiane, 1,3 L; IC 95 %, 0,6 à 2,1 L; P < 0,001), que leur tension artérielle moyenne était plus souvent > 70 mmHg (57 % groupe témoin vs 75 % groupe intervention; différence de pourcentage médiane, 16 %; IC 95 %, 7 à 25%; P = 0,001), qu’ils bénéficiaient d’un meilleur contrôle de la douleur (échelle d’évaluation numérique < 4 pour toutes les mesures postopératoires; 25 % groupe témoin vs 81 % groupe intervention; RR, 0,26; IC 95 %, 0,15 à 0,43; P < 0,001), et avaient possiblement une incidence plus faible d’insuffisance rénale aiguë (RR, 0,37; IC 95 %, 0,14 à 0,98; P = 0,04).

Conclusion

La mise en œuvre d’un algorithme de protocole d’optimisation périopératoire multisystémique n’a pas réduit de manière significative le risque de complications postopératoires. Toutefois, nous avons probablement surestimé l’effet potentiel du traitement dans la conception de notre étude, laquelle a par conséquent manqué de puissance pour démontrer un effet.

Enregistrement de l’étude

Clinicaltrials.gov (NCT01673776). Enregistrée le 23 août 2012.

Notes

Acknowledgements

We are indebted to all doctors and nurses looking after the patients in the operation theatre and at the postanesthesia care unit.

Conflict of interests

The authors declare that they have no competing interests.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Sebastian Schmid and Bettina Jungwirth were involved in the study design, patient recruitment, data collection, data analysis, and writing of the manuscript. Manfred Blobner was involved in the study design and data analysis, and gave critical feedback on the manuscript. Brigitte Haas was involved in patient recruitment and data collection, and gave critical feedback on the manuscript; Martin Lucke and Markus Neumaier were involved in patient recruitment and gave critical feedback on the manuscript; Aida Anetsberger was involved in study design, patient recruitment and data collection, and gave critical feedback on the manuscript.

Funding

This study was funded by institutional support. There was no involvement of any sponsor in study design, collection, analysis, and interpretation of data, writing of the report, and in the decision to submit the article for publication.

References

  1. 1.
    Heinrich S, Rapp K, Rissmann U, Becker C, Konig HH. Service use and costs of incident femoral fractures in nursing home residents in Germany: the Bavarian Fall and Fracture Prevention Project (BF2P2). J Am Med Dir Assoc 2011; 12: 459-66.CrossRefGoogle Scholar
  2. 2.
    Giversen IM. Time trends of mortality after first hip fractures. Osteoporos Int 2007; 18: 721-32.CrossRefGoogle Scholar
  3. 3.
    Haentjens P, Magaziner J, Colon-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 2010; 152: 380-90.CrossRefGoogle Scholar
  4. 4.
    Roche JJ, Wenn RT, Sahota O, Moran CG. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ 2005. DOI: https://doi.org/10.1136/bmj.38643.663843.55.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ali AM, Gibbons CE. Predictors of 30-day hospital readmission after hip fracture: a systematic review. Injury 2017; 48: 243-52.CrossRefGoogle Scholar
  6. 6.
    Grigoryan KV, Javedan H, Rudolph JL. Orthogeriatric care models and outcomes in hip fracture patients: a systematic review and meta-analysis. J Orthop Trauma 2014; 28: e49-55.CrossRefGoogle Scholar
  7. 7.
    Prestmo A, Hagen G, Sletvold O, et al. Comprehensive geriatric care for patients with hip fractures: a prospective, randomised, controlled trial. Lancet 2015; 385: 1623-33.CrossRefGoogle Scholar
  8. 8.
    Kang H, Ha YC, Kim JY, Woo YC, Lee JS, Jang EC. Effectiveness of multimodal pain management after bipolar hemiarthroplasty for hip fracture: a randomized, controlled study. J Bone Joint Surg Am 2013; 95: 291-6.CrossRefGoogle Scholar
  9. 9.
    Bartha E, Arfwedson C, Imnell A, Fernlund ME, Andersson LE, Kalman S. Randomized controlled trial of goal-directed haemodynamic treatment in patients with proximal femoral fracture. Br J Anaesth 2013; 110: 545-53.CrossRefGoogle Scholar
  10. 10.
    Moppett IK, White S, Griffiths R, Buggy D. Tight intra-operative blood pressure control versus standard care for patients undergoing hip fracture repair - Hip Fracture Intervention Study for Prevention of Hypotension (HIP-HOP) trial: study protocol for a randomised controlled trial. Trials 2017. DOI: https://doi.org/10.1186/s13063-017-2066-5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moppett IK, Rowlands M, Mannings A, Moran CG, Wiles MD, NOTTS Investigators. LiDCO-based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: a randomized trial and systematic review. Br J Anaesth 2015; 114: 444-59.Google Scholar
  12. 12.
    Guay J, Parker MJ, Griffiths R, Kopp S. Peripheral nerve blocks for hip fractures. Cochrane Database Syst Rev 2017; 5: CD001159.Google Scholar
  13. 13.
    Lewis SR, Butler AR, Brammar A, Nicholson A, Smith AF. Perioperative fluid volume optimization following proximal femoral fracture. Cochrane Database Syst Rev 2016; 3: CD003004.Google Scholar
  14. 14.
    Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 2005; 9: R687-93.CrossRefGoogle Scholar
  15. 15.
    Gerbershagen HJ, Rothaug J, Kalkman CJ, Meissner W. Determination of moderate-to-severe postoperative pain on the numeric rating scale: a cut-off point analysis applying four different methods. Br J Anaesth 2011; 107: 619-26.CrossRefGoogle Scholar
  16. 16.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189-98.Google Scholar
  17. 17.
    Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med 1990; 113: 941-8.Google Scholar
  18. 18.
    Katz D, Baptista J, Azen SP, Pike MC. Obtaining confidence intervals for the risk ratio in cohort studies. Biometrics 1978; 34: 469-74.CrossRefGoogle Scholar
  19. 19.
    Hodges J, Lehmann E. Estimates of location based on rank tests. Ann Math Stat 1963; 34: 598-611.CrossRefGoogle Scholar
  20. 20.
    Schmid S, Kapfer B, Heim M, et al. Algorithm-guided goal-directed haemodynamic therapy does not improve renal function after major abdominal surgery compared to good standard clinical care: a prospective randomised trial. Crit Care 2016. DOI: https://doi.org/10.1186/s13054-016-1237-1.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev 2015; 95: 405-511.CrossRefGoogle Scholar
  22. 22.
    Moeller C, Fleischmann C, Thomas-Rueddel D, et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care 2016; 35: 75-83.CrossRefGoogle Scholar
  23. 23.
    Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 2013; 309: 678-88.CrossRefGoogle Scholar
  24. 24.
    Shiga T, Wajima Z, Ohe Y. Is operative delay associated with increased mortality of hip fracture patients? Systematic review, meta-analysis, and meta-regression. Can J Anesth 2008; 55: 146-54.CrossRefGoogle Scholar
  25. 25.
    Nyholm AM, Gromov K, Palm H, et al. Time to surgery is associated with thirty-day and ninety-day mortality after proximal femoral fracture: a retrospective observational study on prospectively collected data from the Danish Fracture Database Collaborators. J Bone Joint Surg Am 2015; 97: 1333-9.CrossRefGoogle Scholar
  26. 26.
    Pincus D, Ravi B, Wasserstein D, et al. Association between wait time and 30-day mortality in adults undergoing hip fracture surgery. JAMA 2017; 318: 1994-2003.CrossRefGoogle Scholar
  27. 27.
    Henderson CY, Abdel-Galil R, Woo MY, et al. Improving care for elderly patients with hip fracture: interdisciplinary collaboration in regional analgesia. Can J Anesth 2019; 66: 845-6.CrossRefGoogle Scholar
  28. 28.
    Zhang H, Lu Y, Liu M, et al. Strategies for prevention of postoperative delirium: a systematic review and meta-analysis of randomized trials. Crit Care 2013. DOI: https://doi.org/10.1186/cc12566.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    White SM, Moppett IK, Griffiths R. Outcome by mode of anaesthesia for hip fracture surgery. An observational audit of 65 535 patients in a national dataset. Anaesthesia 2014; 69: 224-30.Google Scholar
  30. 30.
    Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007. DOI: https://doi.org/10.1186/cc5713.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Department of AnesthesiologyChirurgisches Klinikum München SüdMunichGermany
  3. 3.Department of Trauma Surgery and Reconstructive SurgeryChirurgisches Klinikum München SüdMunichGermany
  4. 4.Department of Orthopedics and Trauma SurgeryKlinikum FreisingFreisingGermany
  5. 5.Department of Trauma Surgery, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany

Personalised recommendations