Advertisement

Bioimpedance-measured volume overload predicts longer duration of mechanical ventilation in intensive care unit patients

  • Douglas Slobod
  • Han Yao
  • Joelle Mardini
  • Justyna Natkaniec
  • José A. Correa
  • Dev Jayaraman
  • Catherine L. WeberEmail author
Reports of Original Investigations
  • 69 Downloads

Abstract

Purpose

Bioelectrical impedance analysis (BIA) is a technology that provides a rapid, non-invasive measurement of volume in body compartments and may aid the physician in the assessment of volume status. We sought to investigate the effect of BIA-measured volume status on duration of mechanical ventilation, 28-day mortality, and acute kidney injury requiring renal replacement therapy in a population of medical/surgical patients admitted to the intensive care unit (ICU).

Methods

Prospective observational study of adult patients who required mechanical ventilation within 24 hr of admission to ICU. Bioelectrical impedance analysis measured extracellular water (ECW) and total body water (TBW) and these measurements were recorded on days 1, 3, 5, and 7.

Results

A total of 36 patients were enrolled. Mean (standard deviation) age was 61.8 (21.3) years and 31% of patients were female. The majority were admitted from the emergency department or operating room. The most common diagnosis was sepsis. At 28 days, eight patients (22%) had died. There was no association between ECW/TBW ratio at day 1 and 28-day mortality (odds ratio, 1.2; 95% confidence interval [CI], 0.6 to 2.3) after adjusting for age, sex, and Acute Physiology and Chronic Health Evaluation II score. The median [interquartile range] number of ventilator days was 5 [2.5–7.5]. On day 1, for each 1% increase in the ECW/TBW ratio, there was a 1.2-fold increase in ventilator days (95% CI, 1.003 to 1.4; P = 0.05). It is notable that 20% of eligible patients could not be enrolled because medical equipment interfered with correct electrode placement.

Conclusion

Bioimpedance-measured ECW/TBW on day 1 of admission to the ICU is associated with time on the ventilator. While this technology may be a useful adjunct to the clinical assessment of volume status, there are technical barriers to its routine use in a general ICU population.

Une surcharge volémique telle que mesurée par bio-impédance prédit une durée prolongée de la ventilation mécanique chez les patients à l’unité de soins intensifs

Résumé

Objectif

L’analyse de l’impédance bioélectrique (AIB) est une technologie qui offre une mesure rapide et non invasive du volume dans les compartiments corporels et qui pourrait aider le médecin à évaluer la volémie d’un patient. Nous avons voulu étudier l’effet d’une volémie mesurée par AIB sur la durée de la ventilation mécanique, la mortalité à 28 jours, et l’insuffisance rénale aiguë nécessitant un traitement substitutif de l’insuffisance rénale dans une population de patients médicaux / chirurgicaux admis à l’unité de soins intensifs (USI).

Méthode

Étude observationnelle prospective auprès de patients adultes nécessitant une ventilation mécanique dans les 24 h suivant leur admission à l’USI. L’analyse par impédance bioélectrique a mesuré la quantité d’eau extracellulaire et la quantité d’eau corporelle totale; ces mesures ont été enregistrées aux jours 1, 3, 5 et 7.

Résultats

Au total, 36 patients ont été recrutés. L’âge moyen (écart type) était de 61,8 (21,3) ans et 31% des patients étaient des femmes. La majorité des patients avaient été admis du département de l’urgence ou de la salle d’opération. Le diagnostic le plus répandu était un sepsis. À 28 jours, huit patients (22%) étaient décédés. Aucune association n’a été observée entre le rapport d’eau extracellulaire / eau corporelle totale au jour 1 et la mortalité à 28 jours (rapport de cotes, 1,2; intervalle de confiance [IC] 95%, 0,6 à 2,3) après avoir tenu compte de l’âge, du sexe et du score APACHE-II (Acute Physiology and Chronic Health Evaluation II). Le nombre médian [écart interquartile] de jours sur ventilateur était de 5 [2,5–7,5]. Au jour 1, pour chaque augmentation de 1% du rapport d’eau extracellulaire / eau corporelle totale, on a observé une augmentation de l’ordre de 1,2 fois dans le nombre de jours sous ventilation (IC 95%, 1,003 à 1,4; P = 0,05). Il faut souligner que 20% des patients éligibles n’ont pas pu être recrutés parce que les équipements médicaux ont entravé le positionnement adéquat des électrodes.

Conclusion

Le rapport eau extracellulaire / eau corporelle totale, tel que mesuré par bio-impédance au premier jour d’admission à l’USI, est associé au temps passé sous ventilation mécanique. Bien que cette technologie puisse être un ajout utile à l’évaluation clinique de la volémie, il existe plusieurs obstacles techniques à son utilisation de routine chez une population générale à l’USI.

Notes

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Sangeeta Mehta, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Douglas Slobod contributed to all aspects of this manuscript, including study conception and design; acquisition, analysis, and interpretation of data; and drafting the article. Catherine L. Weber and Dev Jayaraman contributed to the conception and design of the study. Han Yao, Joelle Mardini, and Justyna Natkaniec contributed to the acquisition of data. José A. Correa, Catherine L. Weber, and Dev Jayaraman contributed to the analysis and interpretation of data.

Disclosure

InBody supplied the S10 bioimpedance analysis machine and all disposables free of charge for this study. While InBody received updates on the study progress, they played no role in study design, analysis of results, or preparation of the manuscript.

References

  1. 1.
    National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Netword, Wiedemann HP, Wheeler AP, Bernard GR, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354: 2564-75.CrossRefGoogle Scholar
  2. 2.
    Payen D, de Pont AC, Sakr Y, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 2008; 12: R74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sasai T, Tokioka H, Fukushima T, et al. Reliability of central venous pressure to assess left ventricular preload for fluid resuscitation in patients with septic shock. J Intensiv Care 2014; DOI:  https://doi.org/10.1186/s40560-014-0058-z.CrossRefGoogle Scholar
  4. 4.
    Fürstenberg A, Davenport A. Assessment of body composition in peritoneal dialysis patients using bioelectrical impedance and dual-energy x-ray absorptiometry. Am J Nephrol 2011; 33: 150-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Simpson JA, Lobo DN, Anderson JA, et al. Body water compartment measurements: a comparison of bioelectrical impedance analysis with tritium and sodium bromide dilution techniques. Clin Nutr 2001; 20: 339-43.CrossRefPubMedGoogle Scholar
  6. 6.
    Box GE, Tidwell PW. Transformation of independent variables. Technometrics 1962; 4: 531-50.CrossRefGoogle Scholar
  7. 7.
    Allison PD. Logistic Regression Using the SAS System: Theory and Application. 2nd ed. Cary, NC: SAS Institute Inc.; 2012 .Google Scholar
  8. 8.
    Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. New York: Wiley; 2000 .CrossRefGoogle Scholar
  9. 9.
    Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80: 27-38.CrossRefGoogle Scholar
  10. 10.
    Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied Linear Statistical Models. 5th ed. New York, NY: McGraw-Hill/Irwin; 2004 .Google Scholar
  11. 11.
    Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness. JAMA 2013; 310: 1591-600.CrossRefPubMedGoogle Scholar
  12. 12.
    Ingelse SA, Wiegers HM, Calis JC, van Woensel JB, Bem RA. Early fluid overload prolongs mechanical ventilation in children with viral-lower respiratory tract disease. Pediatr Crit Care Med 2017; 18: e106-11.CrossRefPubMedGoogle Scholar
  13. 13.
    Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol 2010; 6: 107-15.CrossRefPubMedGoogle Scholar
  14. 14.
    Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock 2015; 43: 68-73.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang N, Jiang L, Zhu B, Wen Y, Xi XM, Beijing Acute Kidney Injury Trial (BAKIT) Workgroup. Fluid balance and mortality in critically ill patients with acute kidney injury: a multicenter prospective epidemiological study. Crit Care 2015; DOI:  https://doi.org/10.1186/s13054-015-1085-4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Neyra JA, Li X, Canepa-Escaro F, et al. Cumulative fluid balance and mortality in septic patients with or without acute kidney injury and chronic kidney disease. Crit Care Med 2016; 44: 1891-900.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vincent JL, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34: 344-53.CrossRefGoogle Scholar
  18. 18.
    Samoni S, Vigo V, Resendiz LI, et al. Impact of hyperhydration on the mortality risk in critically ill patients admitted in intensive care units: comparison between bioelectrical impedance vector analysis and cumulative fluid balance recording. Crit Care 2016; DOI:  https://doi.org/10.1186/s13054-016-1269-6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Basso F, Berdin G, Virzi GM, et al. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients. Blood Purif 2013; 36: 192-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang SF, Tseng CM, Liu IF, Tsai SH, Kuo WS, Tsao TP. Clinical significance of bioimpedance spectroscopy in critically ill patients. J Intensiv Care Med 2019; 34: 495-502.CrossRefGoogle Scholar
  21. 21.
    Ince C, Mayeux PR, Nguyen T, et al. The endothelium in sepsis. Shock 2016; 45: 259-70.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.McGill UniversityMontrealCanada
  2. 2.Clinical Nutrition, Montreal General HospitalMcGill UniversityMontrealCanada
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  4. 4.Division of Critical Care MedicineMcGill UniversityMontrealCanada
  5. 5.Division of NephrologyMcGill UniversityMontrealCanada

Personalised recommendations