Advertisement

Vitamin B12 for the treatment of vasoplegia in cardiac surgery and liver transplantation: a narrative review of cases and potential biochemical mechanisms

  • Fritz-Gerald Charles
  • Leslie J. Murray
  • Christopher Giordano
  • Bruce D. SpiessEmail author
Review Article/Brief Review
  • 324 Downloads

Abstract

Purpose

Hydroxocobalamin, or vitamin B12 (V-B12), is frequently used to treat smoke inhalation and cyanide poisoning. Recent reports have also described its use to treat vasoplegia in cardiac surgery and liver transplantation. This narrative review discusses this “off-label” indication for V-B12, focusing on the potential biochemical mechanisms of its actions.

Source

PubMed, Cochrane, and Web of Science databases were searched for clinical reports on the use of V-B12 for vasoplegia in cardiac surgery and liver transplantation, with the biochemical mechanisms discussed being based on a survey of the related biochemistry literature.

Principal findings

Forty-four patients have been treated with V-B12 for vasoplegia in various isolated case reports and one series. Although 75% of patients have increased blood pressure in response to V-B12, there were some “non-responders”. The true efficacy remains unknown because clinical trials have not been performed, and significant reporting bias likely exists. Plausible biochemical explanations exist for the potential beneficial effects of V-B12 in treating vasoplegia, including binding nitric oxide and other gasotransmitters. Additional research is required to clarify if and how these mechanisms are causally involved in effective clinical responders and non-responders.

Conclusions

Although anecdotal reports utilizing V-B12 for vasoplegia are available, no higher-level evidence exists. Future work is necessary to further understand the dosing, timing, adverse events, and biochemical mechanisms of V-B12 compared with other therapies such as methylene blue.

Administration de vitamine B12 pour le traitement de la vasoplégie en chirurgie cardiaque et greffe hépatique : un compte rendu narratif de cas et des mécanismes biochimiques potentiels

Résumé

Objectif

L’hydroxocobalamine, ou vitamine B12 (V-B12), est fréquemment utilisée pour traiter l’inhalation à la fumée et l’empoisonnement au cyanure. Des comptes rendus récents ont également décrit son utilisation pour le traitement de la vasoplégie en chirurgie cardiaque et en greffe hépatique. Ce compte rendu narratif étudie cette indication « non approuvée » pour la V-B12, en se concentrant sur les mécanismes biochimiques potentiels de ses actions.

Source

Les bases de données PubMed, Cochrane et Web of Science ont été passées en revue pour en tirer les comptes rendus cliniques portant sur l’utilisation de la V-B12 pour le traitement de la vasoplégie en chirurgie cardiaque et en greffe hépatique, les mécanismes biochimiques discutés se fondant sur une étude de la littérature biochimique associée.

Constatations principales

Quarante-quatre patients ont été traités avec de la V-B12 pour une vasoplégie dans divers comptes rendus de cas isolés et dans une série de cas. Bien que la tension artérielle de 75 % des patients traités ait augmenté en réponse à l’administration de V-B12, il y a eu quelques cas de « non-répondants ». L’efficacité véritable de cet agent demeure inconnue parce qu’aucune étude clinique n’a été réalisée, et il existe probablement un biais de publication important. Il existe des explications biochimiques plausibles des effets bénéfiques potentiels de la V-B12 pour le traitement de la vasoplégie, notamment la liaison du monoxyde d’azote et d’autres gazotransmetteurs. Des recherches supplémentaires sont nécessaires pour clarifier si et comment ces mécanismes sont impliqués de manière causale chez les répondants cliniquement significatifs et chez les non-répondants.

Conclusion

Bien qu’il existe des comptes rendus anecdotiques sur l’utilisation de la V-B12 pour le traitement de la vasoplégie, il n’existe aucune donnée probante de meilleure qualité. Des recherches supplémentaires sont nécessaires pour mieux comprendre la posologie, le moment d’administration, les événements indésirables et les mécanismes biochimiques de la V-B12 par rapport à d’autres traitements tels le bleu de méthylène.

Notes

Acknowledgements

The authors wish to acknowledge the editorial support of Adriana Barbat and Corey Astrom, ELS, who were instrumental in the preparation and professional development of this paper. Drs. Joseph Roderique, MD, MS, Lt. US Navy and Penelope Reynolds, PhD, though not authors, have also been instrumental in many of the thoughts and in the development of the concept of using V-B12 in vasoplegia.

Conflicts of interest

None of the authors have conflicts of interest with regard to vitamin B12 or vasoplegia. Dr. Spiess discloses that he has shared patents with Virginia Commonwealth University and others for pharmacologically changed (reduced) vitamin B12 in the treatment of carbon monoxide poisoning, which is not the subject of this manuscript.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

All authors contributed substantially to all aspects of this manuscript, including study conception and design, acquisition and interpretation of data, and drafting the article. Fritz-Gerald Charles performed the initial literature review, case research, participated in all discussions of mechanisms, and wrote the primary manuscript. Leslie J. Murray performed the literature review for the chemistry aspects, led discussions regarding the biochemistry, and participated in editing and review of all aspects of this manuscript. Christopher Giordano reviewed the liver transplantation data, coordinated the writing, mentored Dr. Charles, and participated in all discussions regarding literature and biochemistry, as well as reviewing and editing the manuscript. Bruce D. Spiess contributed the original concept, asked the basic biochemical questions, and expressed the hypotheses that began this group by doing a literature and biochemical review. He was lead and final editor on revisions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    MacLennan L, Moiemen N. Management of cyanide toxicity in patients with burns. Burns 2015; 41: 18-24.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nguyen L, Afshari A, Kahn SA, McGrane S, Summitt B. Utility and outcomes of hydroxocobalamin use in smoke inhalation patients. Burns 2017; 43: 107-13.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Broderick KE, Poltluri P, Zhuang S, et al. Cyanide detoxification by the cobalamin precursor cobinamide. Exp Biol Med (Maywood) 2006; 231: 641-9.CrossRefGoogle Scholar
  4. 4.
    Schwertner HA, Valtier S, Bebarta VS. Liquid chromatographic mas spectorometric (LC/MS/MS) determination of plasma hydroxocobalamin and cyanocobalamin concentrations after hydroxocobalamin antidote treatment for cyanide poisoning. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 905: 10-6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Green R, Allen LH, Bjørke-Monsen AL, et al. Vitamin B12 deficiency. Nat Rev Dis Primers 2017; 3: 17040.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gerth K, Ehring T, Braendle M, Schelling P. Nitric oxide scavenging by hydroxocobalamin may account for its hemodynamic profile. Clin Toxicol (Phila) 2006; 44(Suppl 1): 29-36.CrossRefGoogle Scholar
  7. 7.
    Roderique JD, Josef CS, Newcomb AH, Reynolds PS, Somera LG, Spiess BD. Preclinical evaluation of injectable reduced hydroxocobalamin as an antidote to acute carbon monoxide poisoning. J Trauma Acute Care Surg 2015; 79(4 Supple 2): S116-20.Google Scholar
  8. 8.
    Roderique JD, Josef CS, Feldman MJ, Spiess BD. A modern literature review of carbon monoxide poisoning theories, therapies, and potential targets for therapy advancement. Toxicology 2015; 334: 45-58.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roderique JD, VanDyck K, Holman B, Tang D, Chui B, Spiess BD. The use of high-dose hydroxocobalamin for vasoplegic syndrome. Ann Thorac Surg 2014; 97: 1785-6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Burnes ML, Boettcher BT, Woehlck HJ, Zundel MT, Igbal Z, Pagel PS. Hydroxocobalamin as a rescue treatment for refractory vasoplegic syndrome after prolonged cardiopulmonary bypass. J Cardiothoracic Vasc Anesthesia 2017; 31: 1012-4.CrossRefGoogle Scholar
  11. 11.
    Shah PR, Reynolds PS, Pal N, Tang D, McCarthy H, Spiess BD. Hydroxocobalamin for the treatment of cardiac surgery-associated vasoplegia: a case series. Can J Anesth 2018; 65: 560-8.CrossRefGoogle Scholar
  12. 12.
    Boettcher BT, Woehlck HJ, Reck SE, et al. Treatment of vasoplegic syndrome with intravenous hydroxocobalamin during liver transplantation. J Cardiothoracic Vasc Anesth 2017; 31: 1381-4.CrossRefGoogle Scholar
  13. 13.
    Cheungpasitporn W, Hui J, Kashani KB, Wittwer ED, Albright RC Jr, Dillon JJ. High-dose hydroxocobalamin for vasoplegic syndrome causing false blood leak alarm. Clin Kidney J 2017; 10: 357-62.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cai Y, Mack A, Ladlie BL, Martin AK. The use of intravenous hydroxocobalamin as a rescue in methylene blue-resistant vasoplegic syndrome in cardiac surgery. Ann Card Anaesth 2017; 20: 462-4.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zundel MT, Feih JT, Rinka JR, et al. Hydroxocobalamin with or without methylene blue may improve fluid balance in critically ill patients with vasoplegic syndrome after cardiac surgery: a report of two cases. J Cardiothorac Vasc Anesth 2018; 32: 452-7.CrossRefGoogle Scholar
  16. 16.
    Gizaw A, Kidd JM. All that leaks is not blood. Kidney Int 2015; 88: 645.CrossRefGoogle Scholar
  17. 17.
    Warner MA, Mauermann WJ, Armour S, Barbara DW. Red urinary discolouration following hydroxocobalamin treatment for vasoplegic syndrome. Can J Anesth 2017; 64: 673-4.CrossRefGoogle Scholar
  18. 18.
    Woehlck HJ, Boettcher BT, Lauer KK, et al. Hydroxocobalamin for vasoplegic syndrome in liver transplantation: restoration of blood pressure without vasospasm. A A Case Rep 2016; 7: 247-50.CrossRefGoogle Scholar
  19. 19.
    Boettcher BT, Woehlck HJ, Reck SE, et al. Treatment of vasoplegia syndrome with intravenous hydroxocobalamin during liver transplantation. J Cardiothorac Vasc Anesth 2017; 31: 1381-4.CrossRefGoogle Scholar
  20. 20.
    Levy B, Fritz C, Tahon E, Jacquot A, Auchet T, Kimmoun A. Vasoplegia treatments: the past, the present, and the future. Crit Care 2018; 22: 52.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shaefi S, Mittel A, Klick J, et al. Vasoplegia after cardiovascular procedures- pathophysiology and targeted therapy. J Cardiothorac Vasc Anesth 2018; 32: 1013-22.CrossRefGoogle Scholar
  22. 22.
    Fischer GW, Levin MA. Vasoplegia during cardiac surgery: current concepts and management. Semin Thorac Cardiovasc Surg 2010; 22: 140-4.CrossRefGoogle Scholar
  23. 23.
    Levin MA, Lin HM, Castillo JG, Adams DH, Reich DL, Fischer GW. Early on-cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome. Circulation 2009; 120: 1664-7.CrossRefGoogle Scholar
  24. 24.
    Omar S, Zedan A, Nugent K. Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment. Am J Med Sci 2015; 349: 80-8.CrossRefGoogle Scholar
  25. 25.
    Mekontso-Dessap A, Houël R, Soustelle C, Kirsch M, Thébert D, Loisance DY. Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function. Ann Thorac Surg 2001; 71: 1428-32.CrossRefGoogle Scholar
  26. 26.
    Gromes WJ, Carvahlho AC, Palma JH, et al. Vasoplegic syndrome after open heart surgery. J Cardiovasc Surg (Torino) 1998; 39: 619-23.Google Scholar
  27. 27.
    Cremer J, Martin M, Redl H, et al. Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg 1996; 61: 1714-20.CrossRefGoogle Scholar
  28. 28.
    Carrel T, Englberger L, Mohacsi P, Neidhart P, Schmidli J. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg 2000; 15: 347-53.CrossRefGoogle Scholar
  29. 29.
    Pandya NR, Alphonso N, Tu Q, Venugopal P, Schlapbach LJ. Prolonged postoperative vasoplegia in pediatric patients on chronic angiotensin II blocker treatment. Front Cardiovasc Med 2018; 5: 121.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lambden S, Creagh-Brown BC, Hunt J, Summers C, Forni LG. Definitions and pathophysiology of vasoplegic shock. Crit Care 2018; 22: 174.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Evora PR, Ribeiro PJ, de Andrade JC. Methylene blue administration in SIRS after cardiac operations. Ann Thorac Surg 1997; 63: 1212-3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shanmugam G. Vasoplegic syndrome-the role of methylene blue. Eur J Cardiothorac Surg 2005; 28: 705-10.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Maslow AD, Stearns G, Butala P, Schwartz CS, Gough J, Singh AK. The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass. Anesth Analg 2006; 103: 2-8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Juffermans NP, Vervloet MG, Daemen-Gubbels CR, Binnekade JM, deJong M, Groeneveld AB. A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock. Nitric Oxide 2010; 22: 275-80.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Booth AT, Melmer PD, Tribble B, MeHaffey JH, Tribble C. Methylene blue for vasoplegic syndrome. Heart Surg Forum 2017; 20: E234-8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mehaffey JH, Johnston LE, Hawkins RB, et al. Methylene blue for vasoplegic syndrome after cardiac operation: early administration improves survival. Ann Thorac Surg 2017; 104: 36-41.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Evora PR, Alves Junior L, Ferreira CA, et al. Twenty years of vasoplegic syndrome treatment in heart surgery. Methylene blue revised. Rev Bras Cir Cardiovasc 2015; 30: 84-92.Google Scholar
  38. 38.
    Hencken L, To L, Ly N, Morgan JA. Serotonin syndrome following methylene blue administration for vasoplegic syndrome. J Card Surg 2016; 31: 208-10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hanna ER, Clark JA. Serotonin syndrome after cardiopulmonary bypass: a case demonstrating the interaction between methylene blue and selective serotonin reuptake inhibitors. A A Case Rep 2014; 2: 113-4.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Werner I, Guo F, Bogert NV, et al. Methylene blue modulates transendothelial migration of peripheral blood cells. PLoS One 2013; 8: e82214.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weiner MM, Lin HM Danforth D, Rao S, Hosseinian L, Fischer GW. Methylene blue is associated with poor outcomes in vasoplegic shock. J Cardiothoracic Vasc Anesth 2013; 27: 1233-8.Google Scholar
  42. 42.
    Pratt LA, Brody DJ, Gu Q. Antidepressant use among persons aged 12 and over: United States, 2011–2014. NCHS Data Brief 2017; 283: 1-8.Google Scholar
  43. 43.
    Trevor AJ, Katzung BG, Kruidering-Hall M. Agents used in cytopenias; hematopoietic growth factors. In: Trevor AJ, Katzung BG, Kruidering-Hall M, editors. Katzung & Trevor’s Pharmacology: Examination & Board Review. 11th ed. New York, NY: McGraw-Hill; 2015. p. 270.Google Scholar
  44. 44.
    Hoffbrand AV. Megaloblastic anemias. In: Kasper D, Fauci A, Hauser S, Longo D, Jameson J, Loscalzo J, editors. Harrison’s Principles of Internal Medicine. 19th ed. New York, NY: McGraw-Hill; 2014 .Google Scholar
  45. 45.
    Bender DA. Micronutrients: vitamins & minerals. In: Rodwell VW, Bender DA, Botham KM, Kennelly PJ, Weil P, editors. Harper’s Illustrated Biochemistry. 30th ed. New York, NY: McGraw-Hill; 2015. p. 546.Google Scholar
  46. 46.
    UpToDate®. Hydroxocobalamin (vitamin B12a supplement and cyanide antidote): Drug information - 2018. Available from URL: https://www.uptodate.com/contents/hydroxocobalamin-vitamin-b12a-supplement-and-cyanide-antidote-drug-information?search=cyanokit&source=search_result&selectedTitle=1~148&usage_type=default&display_rank=1 (accessed May 2019).
  47. 47.
    Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta 1999; 1411: 290-309.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Helms C, Kim-Shapiro DB. Hemoglobin-mediated nitric oxide signaling. Free Radic Biol Med 2013; 61: 464-72.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wolak M, Zahl A, Schneppensieper T, Stochel G, van Eldik R. Kinetics and mechanism of the reversible binding of nitric oxide to reduced cobalamin B(12r) (Coba(II)alamin). J Am Chem Soc 2001; 123: 9780-91.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Brouwer BM, Chamulitrat W, Ferruzzi G, Sauls DL, Weinberg JB. Nitric oxide interactions with cobalamins: Biochemical and functional consequences. Blood J 1996; 5: 1857-64.CrossRefGoogle Scholar
  51. 51.
    Kruszyna H, Magyar JS, Rochelle LG, et al. Spectroscopic studies of nitric oxide (NO) interactions with cobalamins: Reaction of NO with superoxocobalamin (III) likely accounts for cobalamin reversal of the biological effects of NO. J Pharmacol Exp Ther 1998; 285: 665-71.PubMedGoogle Scholar
  52. 52.
    Gaston B, Drazen JM, Loscalzo J, Stamler JS. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med 1994; 149(2 Pt 1): 538-51.CrossRefGoogle Scholar
  53. 53.
    Wieruszewski PM, Nei SD, Maltais S, Schaff HV, Wittwer ED. Vitamin C for vasoplegia after cardiopulmonary bypass: A case series. A A Pract 2018; 11: 96-9.CrossRefGoogle Scholar
  54. 54.
    Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci U S A 1994; 91: 7583-7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    deMartino AW, Kim-Shapiro DB, Patel RP, Gladwin MT. Nitrite and nitrate chemical biology and signalling. Br J Pharmacol 2019; 176: 228-45.CrossRefGoogle Scholar
  56. 56.
    Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelial-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 2011; 109: 1259-68.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gaddam RR, Chambers S, Murdoch D, Shaw G, Bhatia M. Circulating levels of hydrogen sulfide and substance P in patients with sepsis. J Infect 2017; 75: 293-300.CrossRefGoogle Scholar
  58. 58.
    Salnikov DS, Kucherenko PN, Dereven’kov IA, Makarov SV, van Eldik R. Kinetics and mechanism of the reaction of hydrogen sulfide with cobalamin in aqueous solution. Eur J Inorg Chem 2014; 5: 852-62.Google Scholar
  59. 59.
    Thorup C, Jones CL, Gross SS, Moore LC, Goligorsky MS. Carbon monoxide induces vasodilation and nitric oxide release but suppresses endothelial NOS. Am J Physiol 1999; 277: F882-9.PubMedGoogle Scholar
  60. 60.
    Owens EO. Endogenous carbon monoxide production in disease. Clin Biochem 2010; 43: 1183-8.CrossRefGoogle Scholar
  61. 61.
    Weinberg JB, Chen Y, Jiang N, Beasley BE, Salerno JC, Ghosh DK. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 2009; 46: 1626-32.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Vermeulen Windsandt IC, de Wit NC, Sertorio JT, et al. Blood transfusions increase circulating plasma free hemoglobin levels and plasma nitric oxide consumption: a prospective observational pilot study. Crit Care 2012; 16: R95.CrossRefGoogle Scholar
  63. 63.
    Vercaemst L. Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol 2008; 40: 257-67.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Bauer JA. Synthesis, characterization and nitric oxide release profile of nitrosylcobalamin: a potential chemotherapeutic agent. Anticancer Drugs 1998; 9: 239-44.CrossRefGoogle Scholar
  65. 65.
    Zheng D, Birke RL. Spectroscopic evidence for nitric oxide binding with cob(II)alamin. J Am Chem Soc 2001; 123: 4637-8.CrossRefGoogle Scholar
  66. 66.
    Danishpajooh IO, Gudi T, Chen Y, Kharitonov VG, Sharma VS, Boss GR. Nitric oxide inhibits methionine synthase activity in vivo and disrupts carbon flow through the folate pathway. J Biol Chem 2001; 276: 27296-303.CrossRefGoogle Scholar
  67. 67.
    Kambo A, Sharma VS, Casteel DE, Woods VL Jr, Pilz RB, Boss GR. Nitric oxide inhibits mammalian methylmalonyl-CoA Mutase. J Biol Chem 2005; 280: 10073-82.CrossRefGoogle Scholar
  68. 68.
    Bebarta VS, Garrett N, Boudreau S, Castaneda M. A prospective, randomized trial of intravenous hydroxocobalamin versus whole blood transfusion compared to no treatment for class III hemorrhagic shock resuscitation in prehospital swine model. Acad Emerg Med 2015; 22: 321-30.CrossRefGoogle Scholar
  69. 69.
    Xu J, Lan D, Li T, Yang G, Liu L. Angiopoietins regulate vascular reactivity after haemorrhagic shock in rats through the Tie2-nitric oxide pathway. Cardiovasc Res 2012; 96: 308-19.CrossRefGoogle Scholar
  70. 70.
    López A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 2004; 32: 21-30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.Department of Chemistry, Center for Catalysis and Florida Center for Heterocyclic CompoundsUniversity of FloridaGainesvilleUSA

Personalised recommendations