Advertisement

Hospital cost associated with anemia in elective colorectal surgery: a historical cohort study

  • Simon Feng
  • Joshua Greenberg
  • Husein Moloo
  • Kednapa Thavorn
  • Daniel I. McIsaacEmail author
Reports of Original Investigations

Abstract

Purpose

Anemia is highly prevalent in the colorectal surgery population, affecting 30–70% of patients. Anemia is associated with significant morbidity and mortality; however, there is a lack of evidence on how much anemia impacts healthcare costs. This study aims to determine the hospital cost of index surgical admission, postoperative length of stay, and transfusion rate associated with preoperative anemia in elective major colorectal surgery.

Methods

This historical cohort study included 851 adult inpatients having elective colorectal surgery at a tertiary care academic health sciences network between April 2010 and February 2016. Anemia was defined as hematocrit ≤ 39%. The primary outcome was total hospital costs standardized to 2016 CAD. Secondary outcomes were postoperative length of stay and transfusion. Multivariable regression analyses and propensity score methods were used to measure adjusted associations between anemia and outcomes.

Results

Before surgery, 381/851 (45%) patients were anemic. The mean (standard deviation [SD]) cost of index admission for an elective colorectal surgery was 20,040 (23,219) CAD. Anemia was associated with an adjusted 14% relative increase in costs (95% confidence interval [CI], 6 to 23; P < 0.001). The total hospitalization cost attributable to anemia was 3,027 CAD (95% CI, 2,670 to 3,388). Hospital costs and length of stay were highly associated; anemia was associated with an 18% increase in length of stay (95% CI, 7 to 30; P < 0.001) and increased transfusion rates (risk ratio, 4.7; 95% CI, 2.71 to 8.33; P < 0.001).

Conclusion

Over 2,600 CAD per index surgical admission is attributable to preoperative anemia. Preoperative interventions with per patient cost of less than 2,600 CAD could be cost effective at the hospital level.

Trial registration

www.clinicaltrials.gov (NCT03476707); registered 26 March, 2018.

Les coûts hospitaliers associés à l’anémie lors d’une chirurgie colorectale non urgente: une étude de cohorte historique

Résumé

Objectif

La prévalence de l’anémie est très élevée dans la population subissant une chirurgie colorectale, touchant 30–70 % des patients. L’anémie est associée à une morbidité et une mortalité importantes; toutefois, nous manquons de données probantes pour estimer les coûts des soins de santé associés à l’anémie. Cette étude avait pour but de déterminer les coûts hospitaliers de l’admission chirurgicale initiale, la durée de séjour postopératoire et le taux de transfusion associés à une anémie préopératoire lors de chirurgie colorectale majeure non urgente.

Méthode

Cette étude de cohorte historique a inclus 851 patients adultes hospitalisés et subissant une chirurgie colorectale non urgente dans un réseau hospitalier universitaire de soins tertiaires entre avril 2010 et février 2016. L’anémie était définie comme un hématocrite ≤ 39 %. Le critère d’évaluation principal était les coûts hospitaliers totaux standardisés à la valeur du dollar canadien en 2016. Les critères d’évaluation secondaires étaient la durée de séjour postopératoire et les transfusions. Des analyses de régression multivariée et des évaluations par score de propension ont été utilisées pour mesurer les associations ajustées entre l’anémie et nos critères d’évaluation.

Résultats

Avant la chirurgie, 381/851 (45 %) patients étaient anémiques. Le coût moyen (écart type [ÉT]) de l’admission initiale pour une chirurgie colorectale non urgente était de 20 040 (23 219) CAD. L’anémie a été associée à une augmentation relative ajustée de 14 % des coûts (intervalle de confiance [IC] 95 %, 6 à 23; P < 0,001). Les coûts d’hospitalisation totaux attribuables à l’anémie étaient de 3027 CAD (IC 95 %, 2670 à 3388). Les coûts hospitaliers et la durée de séjour étaient très fortement associés; l’anémie a été associée à une augmentation de 18 % de la durée de séjour (IC 95 %, 7 à 30; P < 0,001) et des taux de transfusion (risque relatif, 4,7; IC 95 %, 2,71 à 8,33; P < 0,001).

Conclusion

Plus de 2600 CAD pour l’admission chirurgicale initiale sont attribuables à l’anémie préopératoire. Des interventions préopératoires ayant un coût par patient de moins de 2600 CAD pourraient être rentables au niveau hospitalier.

Enregistrement de l’étude

www.clinicaltrials.gov (NCT03476707); enregistrée le 26 mars 2018.

Notes

Conflicts of interest

None declared.

Editorial responsibility

This submission was handled by Dr. Philip M. Jones, Associate Editor, Canadian Journal of Anesthesia.

Author contributions

Simon Feng and Daniel I. McIsaac contributed to all aspects of this manuscript, including study conception and design, acquisition, analysis, and interpretation of data, and drafting the article. Joshua Greenberg, Husein Moloo, and Kednapa Thavorn contributed to the conception and design of the study and interpretation of data. Kednapa Thavorn contributed to the analysis of data.

Supplementary material

12630_2019_1379_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 119 kb)

References

  1. 1.
    Muñoz M, Gómez-Ramírez S, Martín-Montañez E, Auerbach M. Perioperative anemia management in colorectal cancer patients: a pragmatic approach. World J Gastroenterol 2014; 20: 1972-85.CrossRefGoogle Scholar
  2. 2.
    Aydinli HH, Benlice C, Ozuner G, Gorgun E, Abbas MA. Risk factors associated with postoperative morbidity in over 500 colovesical fistula patients undergoing colorectal surgery: a retrospective cohort study from ACS-NSQIP database. Int J Colorectal Dis 2017; 32: 469-74.CrossRefGoogle Scholar
  3. 3.
    Leichtle SW, Mouawad NJ, Lampman R, Singal B, Cleary RK. Does preoperative anemia adversely affect colon and rectal surgery outcomes? J Am Coll Surg 2011; 212: 187-94.CrossRefGoogle Scholar
  4. 4.
    Musallam KM, Tamim HM, Richards T, et al. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet 2011; 378: 1396-407.CrossRefGoogle Scholar
  5. 5.
    Beattie WS, Karkouti K, Wijeysundera DN, Tait G. Risk associated with preoperative anemia in noncardiac surgery: a single-center cohort study. Anesthesiology 2009; 110: 574-81.CrossRefGoogle Scholar
  6. 6.
    Wu WC, Schifftner TL, Henderson WG, et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA 2014; 297: 2481-8.CrossRefGoogle Scholar
  7. 7.
    Vonlanthen R, Slankamenac K, Breitenstein S, et al. The impact of complications on costs of major surgical procedures: a cost analysis of 1200 patients. Ann Surg 2011; 254: 907-13.CrossRefGoogle Scholar
  8. 8.
    Feng S, Machina M, Beattie WS. Influence of anaemia and red blood cell transfusion on mortality in high cardiac risk patients undergoing major non-cardiac surgery: a retrospective cohort study. Br J Anaesth 2017; 118: 843-51.CrossRefGoogle Scholar
  9. 9.
    Lagerquist O, Poseluzny D, Werstiuk G, et al. The cost of transfusing a unit of red blood cells: a costing model for Canadian hospital use. ISBT Sci Ser 2017; 12: 375-80.CrossRefGoogle Scholar
  10. 10.
    Acheson AG, Brookes MJ, Spahn DR. Effects of allogeneic red blood cell transfusions on clinical outcomes in patients undergoing colorectal cancer surgery:aA systematic review and meta-analysis. Ann Surg 2012; 256: 235-44.CrossRefGoogle Scholar
  11. 11.
    Talukder Y, Stillwell AP, Siu SK, Ho YH. Comparing survival and recurrence in curative stage I to III colorectal cancer in transfused and nontransfused patients. Int Surg 2014; 99: 8-16.CrossRefGoogle Scholar
  12. 12.
    Kulik U, Schrem H, Bektas H, Klempnauer J, Lehner F. Prognostic relevance of hematological profile before resection for colorectal liver metastases. J Surg Res 2016; 206: 498-506.CrossRefGoogle Scholar
  13. 13.
    Muñoz M, Gõmez-Ramírez S, Cuenca J, et al. Very-short-term perioperative intravenous iron administration and postoperative outcome in major orthopedic surgery: a pooled analysis of observational data from 2547 patients. Transfusion 2014; 54: 289-99.Google Scholar
  14. 14.
    Schröder O, Mickisch O, Seidler U, et al. Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease–a randomized, controlled, open-label, multicenter study. Am J Gastroenterol 2005; 100: 2503-9.CrossRefGoogle Scholar
  15. 15.
    Lidder PG, Sanders G, Whitehead E, et al. Pre-operative oral iron supplementation reduces blood transfusion in colorectal surgery - a prospective, randomised, controlled trial. Ann R Coll Surg Engl 2007; 89: 418-21.CrossRefGoogle Scholar
  16. 16.
    Pujol-Nicolas A, Morrison R, Casson C, et al. Preoperative screening and intervention for mild anemia with low iron stores in elective hip and knee arthroplasty. Transfusion 2017; 57: 3049-57.CrossRefGoogle Scholar
  17. 17.
    von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med 2007; 147: 573-7.CrossRefGoogle Scholar
  18. 18.
    Benchimol EI, Smeeth L, Guttmann A, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med 2015; 12: e1001885.CrossRefGoogle Scholar
  19. 19.
    McIsaac DI, Abdulla K, Yang H, et al. Association of delay of urgent or emergency surgery with mortality and use of health care resources: a propensity score-matched observational cohort study. CMAJ 2017; 189: E905-12.CrossRefGoogle Scholar
  20. 20.
    Wodchis WP, Bushmeneva K, Nikitovic M, McKillop I. Guidelines on Person-Level Costing Using Administrative Databases in Ontario - Working Paper Series, Volume 1, May 2013. Available from URL: http://www.hsprn.ca/uploads/files/Guidelines_on_PersonLevel_Costing_May_2013.pdf (accessed January 2019).
  21. 21.
    Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 2009; 38: 1228-34.CrossRefGoogle Scholar
  22. 22.
    Austin PC, Ghali WA, Tu JV. A comparison of several regression models for analysing cost of CABG surgery. Stat Med 2003; 22: 2799-815.CrossRefGoogle Scholar
  23. 23.
    Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg 2013; 217: 833-42.e1-3.Google Scholar
  24. 24.
    Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J R Stat Soc Ser A 1999; 162: 71-94.CrossRefGoogle Scholar
  25. 25.
    Austin PC, Rothwell DM, Tu JV. A comparison of statistical modeling strategies for analyzing length of stay after CABG surgery. Health Serv Outcomes Res Methodol 2002; 3: 107-33.CrossRefGoogle Scholar
  26. 26.
    Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 2015; 34: 3661-79.CrossRefGoogle Scholar
  27. 27.
    Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015; 68: 627-36.CrossRefGoogle Scholar
  28. 28.
    Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009; 338: b2393.CrossRefGoogle Scholar
  29. 29.
    Frew N, Alexander D, Hood J, Acornley A. Impact of a blood management protocol on transfusion rates and outcomes following total hip and knee arthroplasty. Ann R Coll Surg Engl 2016; 98: 380-6.CrossRefGoogle Scholar
  30. 30.
    Schilling PL, Dimick JB, Birkmeyer JD. Prioritizing quality improvement in general surgery. J Am Coll Surg 2008; 207: 698-704.CrossRefGoogle Scholar
  31. 31.
    Thiele RH, Rea KM, Turrentine FE, et al. Standardization of care: impact of an enhanced recovery protocol on length of stay, complications, and direct costs after colorectal surgery. J Am Coll Surg 2015; 220: 430-43.CrossRefGoogle Scholar
  32. 32.
    Keenan JE, Speicher PJ, Thacker JK, Walter M, Kuchibhatla M, Mantyh CR. The preventive surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care savings. JAMA Surg 2014; 149: 1045-52.CrossRefGoogle Scholar
  33. 33.
    Gani F, Hundt J, Daniel M, Efron JE, Makary MA, Pawlik TM. Variations in hospitals costs for surgical procedures: inefficient care or sick patients? Am J Surg 2017; 213: 1-9.CrossRefGoogle Scholar
  34. 34.
    Potter LJ, Doleman B, Moppett IK. A systematic review of pre-operative anaemia and blood transfusion in patients with fractured hips. Anaesthesia 2015; 70: 483-500.CrossRefGoogle Scholar
  35. 35.
    Wong CJ, Vandervoort MK, Vandervoort SL, et al. A cluster-randomized controlled trial of a blood conservation algorithm in patients undergoing total hip joint arthroplasty. Transfusion 2007; 47: 832-41.CrossRefGoogle Scholar
  36. 36.
    Steele SR, Bleier J, Champagne B, et al. Improving outcomes and cost-effectiveness of colorectal surgery. J Gastrointest Surg 2014; DOI:  https://doi.org/10.1007/s11605-014-2643-9.
  37. 37.
    Doumouras AG, Saleh F, Tarride JE, Hong D. A population-based analysis of the drivers of short-term costs after bariatric surgery within a publicly funded regionalized center of excellence system. Surg Obes Relat Dis 2015; 12: 1023-31.CrossRefGoogle Scholar
  38. 38.
    Greco M, Capretti G, Beretta L, Gemma M, Pecorelli N, Braga M. Enhanced recovery program in colorectal surgery: a meta-analysis of randomized controlled trials. World J Surg 2014; 38: 1531-41.CrossRefGoogle Scholar
  39. 39.
    Wilson MJ, Dekker JW, Harlaar JJ, Jeekel J, Schipperus M, Zwaginga JJ. The role of preoperative iron deficiency in colorectal cancer patients: prevalence and treatment. Int J Colorectal Dis 2017; 32: 1617-24.CrossRefGoogle Scholar
  40. 40.
    Steensma DP, Sloan JA, Dakhil SR, et al. Phase III, randomized study of the effects of parenteral iron, oral iron, or no iron supplementation on the erythropoietic response to darbepoetin alfa for patients with chemotherapy-associated anemia. J Clin Oncol 2011; 29: 97-105.CrossRefGoogle Scholar
  41. 41.
    Kleineruschkamp A, Meybohm P, Straub N, Zacharowski K, Choorapoikayil S. A model-based cost-effectiveness analysis of patient blood management. Blood Transfus 2018; DOI:  https://doi.org/10.2450/2018.0213-17.
  42. 42.
    Kotzé A, Carter LA, Scally AJ. Effect of a patient blood management programme on preoperative anaemia, transfusion rate, and outcome after primary hip or knee arthroplasty: a quality improvement cycle. Br J Anaesth 2012; 108: 943-52.CrossRefGoogle Scholar
  43. 43.
    Richards T, Clevenger B, Keidan J, et al. PREVENTT: preoperative intravenous iron to treat anaemia in major surgery: study protocol for a randomised controlled trial. Trials 2015; 16: 254.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  • Simon Feng
    • 1
  • Joshua Greenberg
    • 2
  • Husein Moloo
    • 2
    • 3
  • Kednapa Thavorn
    • 3
    • 4
  • Daniel I. McIsaac
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Anesthesiology and Pain MedicineThe Ottawa Hospital and University of OttawaOttawaCanada
  2. 2.Department of SurgeryThe Ottawa Hospital and University of OttawaOttawaCanada
  3. 3.Ottawa Hospital Research InstituteOttawaCanada
  4. 4.School of Epidemiology and Public HealthUniversity of OttawaOttawaCanada
  5. 5.Department of Anesthesiology & Pain MedicineThe Ottawa HospitalOttawaCanada

Personalised recommendations