Accuracy of blood glucose measurements using the NOVA StatStrip® glucometer during cardiac surgery: a prospective observational study

  • Yosuke NakadateEmail author
  • Hiroaki Sato
  • Patricia Roque
  • Tamaki Sato
  • Takashi Matsukawa
  • Linda Wykes
  • Akiko Kawakami
  • Thomas Schricker
Reports of Original Investigations



The Nova StatStrip® Glucose Hospital Meter System (Nova Biomedical, Waltham, MA, USA) is United States Food and Drug Administration approved for point-of-care use in critically ill patients, but its use during cardiac surgery has not been evaluated. In this study, we compare glucose values obtained during cardiac surgery by StatStrip® with values obtained by a blood gas analyzer.


Blood glucose concentrations were analyzed in 121 patients by the StatStrip point- of-care test (POCT) glucose monitor and the GEM® Premier™ 3000 blood gas analyzer (Instrumentation Laboratory Company, Bedford MA, USA). Arterial blood samples were taken at baseline (before surgery), before cardiopulmonary bypass (CPB), during early and late CPB, and 30 min after CPB. Accuracy of the StatStrip glucometer was analyzed using the Clinical and Laboratory Standards Institute (CLSI) POCT12-A3 criteria (criterion 1; 95% of samples should be ± 0.66 mMol·L−1 of reference glucose values < 5.5 mMol·L−1 and ± 12.5% for reference glucose values > 5.5 mMol·L−1, criterion 2; 98% of samples should be ± 0.83 mMol·L−1 of reference glucose values < 4.1 mMol·L−1 or 20% of the reference glucose for values > 4.1 mMol·L−1).


The accuracy of StatStrip glucose measurements at baseline (99%, 100%) and before CPB (95%, 98%), but not during (early: 84%, 97%; late: 83%, 96%) and after (92%, 100%) CPB, satisfied the CLSI POCT12-A3 criteria.


Arterial blood glucose measurement by StatStrip was accurate before CPB, but lacked accuracy during and after CPB. Glucose values should be interpreted with caution when intensive glucose control protocols are being used during cardiac surgery.

Trial registration (NCT02729064); registered 5 April, 2016.

Précision des mesures de la glycémie prises avec le glucomètre StatStrip® de NOVA pendant une chirurgie cardiaque : une étude observationnelle prospective



Le glucomètre hospitalier StatStrip® de Nova (Nova Biomedical, Waltham, MA, É.-U.) est approuvé par la FDA (Food and Drug Administration) américaine pour une utilisation au chevet chez les patients en état critique, mais son utilisation n’a pas été évaluée en chirurgie cardiaque. Dans cette étude, nous avons comparé les valeurs glycémiques obtenues par le lecteur StatStrip® et les valeurs obtenues par un analyseur des gaz du sang pendant une chirurgie cardiaque.


Les concentrations glycémiques de 121 patients ont été analysées en utilisant le moniteur glycémique StatStrip et l’analyseur de gaz sanguins GEM® Premier™ 3000 (Instrumentation Laboratory Company, Bedford, MA, É.-U.). Des échantillons de sang artériel ont été prélevés avant la chirurgie, avant la circulation extracorporelle (CEC), au début et à la fin de la CEC et 30 min après la CEC. La précision du glucomètre StatStrip a été analysée à l’aide des critères de l’Institut des normes cliniques et de laboratoire (Clinical and Laboratory Standards Institute (CLSI)) POCT12-A3 (1er critère; 95 % des échantillons doivent être à l’intérieur de ± 0,66 mMol·L−1 des valeurs glycémiques de référence < 5,5 mMol·L−1 et ± 12,5 % pour les valeurs glycémiques de référence > 5,5 mMol·L−1, 2ème critère; 98 % des échantillons doivent être à l’intérieur de ± 0,83 mMol·L−1 des valeurs glycémiques de référence < 4,1 mMol·L−1 ou 20 % du taux glycémique de référence pour les valeurs > 4,1 mMol·L−1).


La précision des mesures glycémiques prises par le StatStrip avant l’opération (99 %, 100 %) et avant la CEC (95 %, 98 %), mais non durant (début : 84 %, 97 %; fin : 83 %, 96 %) et après (92 %,100 %) la CEC, respectait les critères POCT12-A3 du CLSI. <0}


La mesure de la glycémie artérielle réalisée avec le StatStrip était précise avant la CEC mais a manqué de précision pendant et après la CEC. Les valeurs glycémiques devraient donc être interprétées avec prudence lorsque des protocoles intensifs de contrôle glycémique sont utilisés pendant une chirurgie cardiaque.

Enregistrement de l’étude (NCT02729064); enregistrée le 5 avril 2016.


Conflict of interest

All authors declare that they have no financial or non-financial interests that may be relevant to the submitted work.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Yosuke Nakadate contributed to the acquisition, analysis, and interpretation of data, and drafting the article. Hiroaki Sato contributed to conception and design of the study, and analysis and interpretation of data. Patricia Roque contributed to the acquisition, analysis, and interpretation of data, and drafting the article. Tamaki Sato contributed to conception and design of the study, and the acquisition and interpretation of data. Takashi Matsukawa contributed to the interpretation of the data and drafting the article. Linda Wykes contributed to conception and design of the study and the interpretation of data. Akiko Kawakami contributed the interpretation of the data and drafting the article. Thomas Schricker contributed to conception and design of the study, analysis and interpretation of data, and drafting the article.

Funding sources

The study was supported by a departmental fund (account number 65788) and a salary grant from the Yamanashi Prefecture (to Y. N).


  1. 1.
    Thiessen S, Vanhorebeek I, Van den Berghe G. Glycemic control and outcome related to cardiopulmonary bypass. Best Pract Res Clin Anaesthesiol 2015; 29: 177-87.CrossRefGoogle Scholar
  2. 2.
    Rice MJ, Pitkin AD, Coursin DB. Review article: glucose measurement in the operating room: more complicated than it seems. Anesth Analg 2010; 110: 1056-65.CrossRefGoogle Scholar
  3. 3.
    nova biomedical. StatStrip® GLU Nova Hospital Glucose Monitoring System. Available from URL; (accessed February 2019).
  4. 4.
    Clinical and Laboratory Standard Institute. Point-of-Care Blood Glucose Testing in Acute and Chronic Care Facilities; Approved Guideline - Third Edition; 2013.Google Scholar
  5. 5.
    Parkes JL, Slatin SL, Pardo S, Ginsberg BH. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 2000; 23: 1143-8.CrossRefGoogle Scholar
  6. 6.
    Clinical and Laboratory Standard Institute. In vitro diagnostic test systems – Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus, 2nd edition. International Organization for Standardization; 2013.Google Scholar
  7. 7.
    U.S. National Library of Medicine. Intraoperative Nasal Insulin Effect on Plasma and CSF Insulin Concentration and Blood Glucose. Available from URL: February 2019)
  8. 8.
    Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg 2012; 41: 734-44; discussion 744-5.Google Scholar
  9. 9.
    Dobson G. Special announcement: Guidelines to the practice of anesthesia - revised edition 2018. Can J Anesth 2018; 65: 1-6.Google Scholar
  10. 10.
    Karon BS, Donato LJ, Larsen CM, et al. Accuracy of capillary and arterial whole blood glucose measurements using a glucose meter in patients under general anesthesia in the operating room. Anesthesiology 2017; 127: 466-74.CrossRefGoogle Scholar
  11. 11.
    Inoue S, Egi M, Kotani J, Morita K. Accuracy of blood-glucose measurements using glucose meters and arterial blood gas analyzers in critically ill adult patients: systematic review. Crit Care 2013; 17: R48.CrossRefGoogle Scholar
  12. 12.
    Steinfelder-Visscher J, Weerwind PW, Teerenstra S, Brouwer MH. Reliability of point-of-care hematocrit, blood gas, electrolyte, lactate and glucose measurement during cardiopulmonary bypass. Perfusion 2006; 21: 33-7.CrossRefGoogle Scholar
  13. 13.
    Ghys T, Goedhuys W, Spincemaille K, Gorus F, Gerlo E. Plasma-equivalent glucose at the point-of-care: evaluation of Roche Accu-Chek Inform and Abbott Precision PCx glucose meters. Clin Chim Acta 2007; 386: 63-8.CrossRefGoogle Scholar
  14. 14.
    Karon BS, Griesmann L, Scott R, et al. Evaluation of the impact of hematocrit and other interference on the accuracy of hospital-based glucose meters. Diabetes Technol Ther 2008; 10: 111-20.CrossRefGoogle Scholar
  15. 15.
    Tang Z, Louie RF, Lee JH, Lee DM, Miller EE, Kost GJ. Oxygen effects on glucose meter measurements with glucose dehydrogenase- and oxidase-based test strips for point-of-care testing. Crit Care Med 2001; 29: 1062-70.CrossRefGoogle Scholar
  16. 16.
    Pulzi Junior SA, Assuncao MS, Mazza BF, et al. Accuracy of different methods for blood glucose measurement in critically ill patients. Sao Paulo Med J 2009; 127: 259-65.CrossRefGoogle Scholar
  17. 17.
    Kanji S, Buffie J, Hutton B, et al. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit Care Med 2005; 33: 2778-85.CrossRefGoogle Scholar
  18. 18.
    Mraovic B, Schwenk ES, Epstein RH. Intraoperative accuracy of a point-of-care glucose meter compared with simultaneous central laboratory measurements. J Diabetes Sci Technol 2012; 6: 541-6.CrossRefGoogle Scholar
  19. 19.
    Karon BS, Blanshan CT, Deobald GR, Wockenfus AM. Retrospective evaluation of the accuracy of Roche AccuChek Inform and Nova StatStrip glucose meters when used on critically ill patients. Diabetes Technol Ther 2014; 16: 828-32.CrossRefGoogle Scholar
  20. 20.
    Mitsios JV, Ashby LA, Haverstick DM, Bruns DE, Scott MG. Analytic evaluation of a new glucose meter system in 15 different critical care settings. J Diabetes Sci Technol 2013; 7: 1282-7.CrossRefGoogle Scholar
  21. 21.
    Murray DJ, Brosnahan WJ, Pennell B, Kapalanski D, Weiler JM, Olson J. Heparin detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and heparin assays. J Cardiothorac Vasc Anesth 1997; 11: 24-8.CrossRefGoogle Scholar
  22. 22.
    U.S. Food and Drug Administration. Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use - Guidance for Industry and Food and Drug Administration Staff, October 2016; Issued January 2014. Available from URL: (accessed February 2019).
  23. 23.
    Mazer CD, Whitlock RP, Fergusson DA, et al. Six-month outcomes after restrictive or liberal transfusion for cardiac surgery. N Engl J Med 2018; 379: 1224-33.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of YamanashiChuo-cityJapan
  2. 2.Department of Anesthesia, Royal Victoria HospitalMcGill University Health Centre Glen SiteMontrealCanada
  3. 3.School of Human NutritionMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations