Advertisement

Renal replacement therapy: a practical update

  • George AlvarezEmail author
  • Carla Chrusch
  • Terry Hulme
  • Juan G. Posadas-Calleja
Review Article/Brief Review
  • 70 Downloads

Abstract

Acute kidney injury (AKI) is defined as an abrupt decrease in kidney function, with the most severe form requiring some method of renal replacement therapy (RRT). The use of RRT is required in 5-10% of critically ill patients who develop severe AKI. Renal replacement therapy can be provided as either intermittent hemodialysis or one of the various modes of continuous renal replacement therapy (CRRT), with CRRT potentially conferring an advantage with respect to renal recovery and dialysis independence. There is no difference in mortality when comparing low (< 25 mL·kg−1·hr−1) vs high (> 40 mL·kg−1·hr−1) RRT dosing. Continuous renal replacement therapy may be run in different modes of increasing complexity depending on a given patient’s clinical needs. Regional citrate anticoagulation is recommended as the therapy of choice for the majority of critically ill patients requiring CRRT.

Traitement substitutif de l’insuffisance rénale : une mise à jour pratique

Résumé

L’insuffisance rénale aiguë (IRA) se définit par une réduction subite de la fonction rénale, et sa forme la plus grave nécessite un type de traitement substitutif. Le recours à un traitement substitutif de l’insuffisance rénale est nécessaire chez 5-10 % des patients critiques qui souffrent d’une IRA grave. Le traitement substitutif de l’insuffisance rénale peut prendre la forme d’une hémodialyse intermittente ou de l’un des divers modes de traitement substitutif de l’insuffisance rénale en continu, ce second type de traitement conférant potentiellement un avantage en matière de récupération de la fonction rénale et d’indépendance de la dialyse. Aucune différence de mortalité n’a été observée en comparant un traitement substitutif de l’insuffisance rénale à faible dose d’ultrafiltration (< 25 mL·kg−1·h−1) vs à dose élevée (> 40 mL·kg−1·h−1). Le traitement substitutif de l’insuffisance rénale en continu peut être réalisé selon différents modes de complexité croissante en fonction des besoins cliniques d’un patient donné. Une anticoagulation régionale au citrate est recommandée comme traitement de choix pour la majorité des patients critiques nécessitant un traitement substitutif de l’insuffisance rénale en continu.

Notes

Conflict of interest

George Alvarez, Carla Chrusch, Terry Hulme, and Juan G. Posadas-Calleja have no conflicts of interest or disclosures.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

All authors reviewed the relevant literature and wrote the manuscript. All authors participated in the revision process.

Funding

Dr. Alvarez has received educational grants through Baxter Gambro Canada.

References

  1. 1.
    Mitzner SR, Stange J, Klammt S, Peszynski P, Schmidt R, Noldge-Schomburg G. Extracorporeal detoxification using the molecular adsorbent recirculating system for critically ill patients with liver failure. J Am Soc Nephrol 2001; 12(Suppl 17): S75-82.Google Scholar
  2. 2.
    Beurtheret S, Mastroianni C, Pozzi M, et al. Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory distress syndrome: single-centre experience with 1-year follow-up. Eur J Cardiothorac Surg 2012; 41: 691-5.Google Scholar
  3. 3.
    Zeiler FA, Matuszczak M, Teitelbaum J, Kazina CJ, Gillman LM. Plasmapheresis for refractory status epilepticus, part 1: a scoping systematic review of the adult literature. Seizure 2016; 43: 14-22.Google Scholar
  4. 4.
    Liano F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 1996; 50: 811-8.Google Scholar
  5. 5.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med 1996; 24: 192-8.Google Scholar
  6. 6.
    Uchino S, Kellum JA, Bellomo R, al. Acute renal failure in criticallly ill patients: a multinational, multicenter study. JAMA 2005; 294: 813-8.Google Scholar
  7. 7.
    Ratanarat R, Hantaweepant C, Tangkawattanakul N, Permpikul C. The clinical outcome of acute kidney injury in critically ill Thai patients stratified with RIFLE classification. J Med Assoc Thai 2009; 92(Suppl 2): S61-7.Google Scholar
  8. 8.
    Chen YC, Jenq CC, Tian YC, et al. RIFLE classification for predicting in-hospital mortality in critically ill sepsis patients. Shock 2009; 31: 139-45.Google Scholar
  9. 9.
    Kellum JA, Lameire N, Aspelin P, et al. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements 2012; 2: 1-138.Google Scholar
  10. 10.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8: R204-12.Google Scholar
  11. 11.
    Eknoyan G, Lameire N, Barsoum R, et al. The burden of kidney disease: Improving global outcomes. Kidney Int 2004; 66: 1310-4.Google Scholar
  12. 12.
    Mehta R, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11: R31.Google Scholar
  13. 13.
    Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 2007; 18: 1292-8.Google Scholar
  14. 14.
    Chawla LS, Bellomo R, Bihorac A, et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 2017; 13: 241-57.Google Scholar
  15. 15.
    Abosaif NY, Tolba YA, Heap M, Russell J, El Nahas AM. The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Am J Kidney Dis 2005; 46: 1038-48.Google Scholar
  16. 16.
    Kellum JA, Bellomo R, Ronco C. Classification of acute kidney injury using RIFLE: what’s the purpose? Crit Care Med 2007; 35: 1983-4.Google Scholar
  17. 17.
    Jenq CC, Tsai MH, Tian YC, et al. RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients. Intensive Care Med 2007; 33: 1921-30.Google Scholar
  18. 18.
    Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 2007; 35: 1837-43.Google Scholar
  19. 19.
    Maccariello E, Soares M, Valente C, et al. RIFLE classification in patients with acute kidney injury in need of renal replacement therapy. Intensive Care Med 2007; 33: 597-605.Google Scholar
  20. 20.
    Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 2008; 73: 538-46.Google Scholar
  21. 21.
    Bagshaw SM, George C, Dinu I, Bellomo R. A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 2008; 23: 1203-10.Google Scholar
  22. 22.
    Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a veterans administration study. Crit Care Med 2009; 37: 2552-8.Google Scholar
  23. 23.
    Joannidis M, Metnitz B, Bauer P, et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 2009; 35: 1692-702.Google Scholar
  24. 24.
    Schiffl H, Lang SM, Fischer R. Long-term outcomes of survivors of ICU acute kidney injury requiring renal replacement therapy: a 10-year prospective cohort study. Clin Kidney J 2012; 5: 297-302.Google Scholar
  25. 25.
    Sawhney S, Marks A, Fluck N, Levin A, Prescott G, Black C. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: a large population-based cohort study. Am J Kidney Dis 2017; 69: 18-28.Google Scholar
  26. 26.
    Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006; 10: R73.Google Scholar
  27. 27.
    Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 2006; 34: 1913-7.Google Scholar
  28. 28.
    Pannu N, James M, Hemmelgarn B, Klarenbach S; Alberta Kidney Disease Network. Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 2013; 8: 194-202.Google Scholar
  29. 29.
    Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int 2009; 76: 1089-97.Google Scholar
  30. 30.
    Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 2009; 53: 961-73.Google Scholar
  31. 31.
    Wald R, Quinn RR, Luo J, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009; 302: 1179-85.Google Scholar
  32. 32.
    Triverio PA, Martin PY, Romand J, Pugin J, Perneger T, Saudan P. Long-term prognosis after acute kidney injury requiring renal replacement therapy. Nephrol Dial Transplant 2009; 24: 2186-9.Google Scholar
  33. 33.
    Wald R, McArthur E, Adhikari NK, et al. Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am J Kidney Dis 2015; 65: 870-7.Google Scholar
  34. 34.
    Heung M, Steffick DE, Zivin K, et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data. Am J Kidney Dis 2016; 67: 742-52.Google Scholar
  35. 35.
    Reddy VG. Prevention of postoperative acute renal failure. J Postgrad Med 2002; 48: 64-70.Google Scholar
  36. 36.
    Harel Z, Chan CT. Predicting and preventing acute kidney injury after cardiac surgery. Curr Opin Nephrol Hypertens 2008; 17: 624-8.Google Scholar
  37. 37.
    Venkataraman R. Can we prevent acute kidney injury? Crit Care Med 2008; 36(4 Suppl): S166-71.Google Scholar
  38. 38.
    Stewart J, Findlay G, Smith N, Kelly K, Mason M. Adding insult to injury: a review of the care of patients who died in hospital with a primary diagnosis of acute kidney injury (acute renal failure). London, UK: National Confidential Enquiry into Patient Outcome and Death; 2009. Available from URL: https://www.ncepod.org.uk/2009report1/Downloads/AKI_report.pdf (accessed December 2018).
  39. 39.
    Itenov TS, Berthelsen RE, Jensen JU, et al. Predicting recovery from acute kidney injury in critically ill patients: development and validation of a prediction model. Crit Care Resusc 2018; 20: 54-60.Google Scholar
  40. 40.
    Oppert M, Engel C, Brunkhorst FM, et al. Acute renal failure in patients with severe sepsis and septic shock—a significant independant risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant 2008; 23: 904-9.Google Scholar
  41. 41.
    Bagshaw SM, George C, Bellomo R; ANZICS Database Management Committee. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 2008; 12: R47.Google Scholar
  42. 42.
    Sakhuja A, Kumar G, Gupta S, Mittal T, Taneja A, Nanchal RS. Acute kidney injury requiring dialysis in severe sepsis. Am J Respir Crit Care Med 2015; 192: 951-7.Google Scholar
  43. 43.
    Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med 2008; 36: 610-7.Google Scholar
  44. 44.
    Schneider AG, Bellomo R, Bagshaw SM, et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 2013; 39: 987-97.Google Scholar
  45. 45.
    Prowle JR, Bellomo R. Continuous renal replacement therapy: recent advances and future research. Nat Rev Nephrol 2010; 6: 521-9.Google Scholar
  46. 46.
    Tolwani A. Continuous renal-replacement therapy for acute kidney injury. N Engl J Med 2013; 368: 1160-1.Google Scholar
  47. 47.
    Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 2015; 41: 1411-23.Google Scholar
  48. 48.
    Wald R, Shariff SZ, Adhikari NK, et al. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study. Crit Care Med 2014; 42: 868-77.Google Scholar
  49. 49.
    Schoenfelder T, Chen X, Bleß HH. Effects of continuous and intermittent renal replacement therapies among adult patients with acute kidney injury. GMS Health Technol Assess 2017; DOI:  https://doi.org/10.3205/hta000127.
  50. 50.
    Manns B, Doig CJ, Lee H, et al. Cost of acute renal failure requiring dialysis in the intensive care unit: clinical and resource implications of renal recovery. Crit Care Med 2003; 31: 449-55.Google Scholar
  51. 51.
    Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol 2014; 10: 193-207.Google Scholar
  52. 52.
    Siddiqui NF, Coca SG, Devereaux PJ, et al. Secular trends in acute dialysis after elective major surgery—1995 to 2009. CMAJ 2012; 184: 1237-45.Google Scholar
  53. 53.
    Hsu RK, McCulloch CE, Dudley RA, Lo LJ, Hsu CY. Temporal changes in incidence of dialysis-requiring AKI. J Am Soc Nephrol 2013; 24: 37-42.Google Scholar
  54. 54.
    Palevsky PM. Indications and timing of renal replacement therapy in acute kidney injury. Crit Care Med 2008; 36(4 Suppl): S224-8.Google Scholar
  55. 55.
    Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 2016; 315: 2190-9.Google Scholar
  56. 56.
    Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 2016; 375: 122-33.Google Scholar
  57. 57.
    Wierstra BT, Kadri S, Alomar S, Burbano X, Barrisford GW, Kao RL. The impact of “early” versus “late” initiation of renal replacement therapy in critical care patients with acute kidney injury: a systematic review and evidence synthesis. Crit Care 2016; 20: 122.Google Scholar
  58. 58.
    Bagshaw SM, Lamontagne F, Joannidis M, Wald R. When to start renal replacement therapy in critically ill patients with acute kidney injury: comment on AKIKI and ELAIN. Crit Care 2016; 20: 245.Google Scholar
  59. 59.
    Walsh M, Srinathan SK, McAuley DF, et al. The statistical significance of randomized controlled trial results is frequently fragile: a case for a Fragility Index. J Clin Epidemiol 2014; 67: 622-8.Google Scholar
  60. 60.
    Barbar SD, Clere-Jehl R, Bourredjem A, et al. Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 2018; 379: 1431-42.Google Scholar
  61. 61.
    Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 1991; 6: 722-4.Google Scholar
  62. 62.
    Santoro D, Benedetto F, Mondello P, et al. Vascular access for hemodialysis: current perspectives. Int J Nephrol Renovasc Dis 2014; 7: 281-94.Google Scholar
  63. 63.
    Abdel Azim AB, El Said TW, El Said HW, et al. A randomized controlled clinical trial of 4% sodium citrate versus heparin as locking solution for temporary dialysis catheters among hemodialysis patients. Clin Nephrol 2018; 90: 341-9.Google Scholar
  64. 64.
    Arechabala MC, Catoni MI, Claro JC, et al. Antimicrobial lock solutions for preventing catheter-related infections in haemodialysis. Cochrane Database Syst Rev 2018; 4: CD010597.Google Scholar
  65. 65.
    Mokrzycki MH, Lok CE. Traditional and non-traditional strategies to optimize catheter function: go with more flow. Kidney Int 2010; 78: 1218-31.Google Scholar
  66. 66.
    Villa G, Neri M, Bellomo R, et al. Nomenclature for renal replacement therapy and blood purification techniques in critically ill patients: practical applications. Crit Care 2016; 20: 283.Google Scholar
  67. 67.
    Sakai K. Dialysis membranes for blood purification. Front Med Biol Eng 2000; 10: 117-29.Google Scholar
  68. 68.
    Kokubo K, Kurihara Y, Kobayashi K, Tsukao H, Kobayashi H. Evaluation of the biocompatibility of dialysis membranes. Blood Purif 2015; 40: 293-7.Google Scholar
  69. 69.
    Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 1990; 38: 982-4.Google Scholar
  70. 70.
    Baldwin I, Baldwin M, Fealy N, et al. Con-current versus counter-current dialysate flow during CVVHD. A Comparative study for creatinine and urea removal. Blood Purif 2016; 41: 171-6.Google Scholar
  71. 71.
    Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000; 356: 26-30.Google Scholar
  72. 72.
    Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, Zandstra DF, Kesecioglu J. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med 2002; 30: 2205-11.Google Scholar
  73. 73.
    RENAL Replacement Therapy Study Investigators; Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 2009; 361: 1627-38.Google Scholar
  74. 74.
    Prowle JR, Schneider A, Bellomo R. Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury. Crit Care 2011; 15: 207.Google Scholar
  75. 75.
    Tolwani AJ, Campbell RC, Stofan BS, Lai KR, Oster RA, Wille KM. Standard versus high-dose CVVHDF for ICU-related acute renal failure. J Am Soc Nephrol 2008; 19: 1233-8.Google Scholar
  76. 76.
    Claure-Del Granado R, Macedo E, Chertow GM, et al. Effluent volume in continuous renal replacement therapy overestimates the delivered dose of dialysis. Clin J Am Soc Nephrol 2011; 6: 467-75.Google Scholar
  77. 77.
    Pasko DA, Churchwell MD, Salama NN, Mueller BA. Longitudinal hemodiafilter performance in modeled continuous renal replacement therapy. Blood Purif 2011; 32: 82-8.Google Scholar
  78. 78.
    Brandenburger T, Dimski T, Slowinski T, Kindgen-Milles D. Renal replacement therapy and anticoagulation. Best Pract Res Clin Anaesthesiol 2017; 31: 387-401.Google Scholar
  79. 79.
    Claure-Del Granado R, Macedo E, Soroko S, et al. Anticoagulation, delivered dose and outcomes in CRRT: the program to improve care in acute renal disease (PICARD). Hemodial Int 2014; 18: 641-9.Google Scholar
  80. 80.
    Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: Anticoagulation for continuous renal replacement therapy—heparin or citrate? Crit Care 2011; 15: 202.Google Scholar
  81. 81.
    Rosenberg RD. Heparin action. Circulation 1974; 49: 603-5.Google Scholar
  82. 82.
    Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-78.Google Scholar
  83. 83.
    Link A, Girndt M, Selejan S, Mathes A, Bohm M, Rensing H. Argatroban for anticoagulation in continuous renal replacement therapy. Crit Care Med 2009; 37: 105-10.Google Scholar
  84. 84.
    Thrombosis Canada: Dedicated To Furthering Education & Research in Thrombotic Disease. Thrombose Canada - Whitby, ON - 2018. Available from URL: https://thrombosiscanada.ca (accessed December 2018).
  85. 85.
    Joannidis M, Kountchev J, Rauchenzauner M, et al. Enoxaparin vs. unfractionated heparin for anticoagulation during continuous veno-venous hemofiltration: a randomized controlled crossover study. Intensive Care Med 2007; 33: 1571-9.Google Scholar
  86. 86.
    Liu C, Mao Z, Kang H, Hu J, Zhou F. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care 2016; 20: 144.Google Scholar
  87. 87.
    Joannidis M, Oudemans-van Straaten HM. Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit Care 2007; 11: 218.Google Scholar
  88. 88.
    Khadzhynov D, Dahlinger A, Schelter C, et al. Hyperlactatemia, lactate kinetics and prediction of citrate accumulation in critically ill patients undergoing continuous renal replacement therapy with regional citrate anticoagulation. Crit Care Med 2017; 45: e941-6.Google Scholar
  89. 89.
    Bai M, Zhou M, He L, et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med 2015; 41: 2098-110.Google Scholar
  90. 90.
    Bagshaw SM, Darmon M, Ostermann M, et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med 2017; 43: 841-54.Google Scholar
  91. 91.
    Davenport A, Tolwani A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus 2009; 2: 439-47.Google Scholar
  92. 92.
    Bagshaw SM, Laupland KB, Boiteau PJ, Godinez-Luna T. Is regional citrate superior to systemic heparin anticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J Crit Care 2005; 20: 155-61.Google Scholar
  93. 93.
    Calatzis A, Toepfer M, Schramm W, Spannagl M, Schiffl H. Citrate anticoagulation for extracorporeal circuits: effects on whole blood coagulation activation and clot formation. Nephron 2001; 89: 233-6.Google Scholar
  94. 94.
    Oudemans-van Straaten HM, Ostermann M. Bench-to-bedside review: Citrate for continuous renal replacement therapy, from science to practice. Crit Care 2012; 16: 249.Google Scholar
  95. 95.
    Oudemans-van Straaten HM, Bosman RJ, Koopmans M, et al. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 2009; 37: 545-52.Google Scholar
  96. 96.
    Durao MS, Monte JC, Batista MC, et al. The use of regional citrate anticoagulation for continuous venovenous hemodiafiltration in acute kidney injury. Crit Care Med 2008; 36: 3024-9.Google Scholar
  97. 97.
    Morabito S, Pistolesi V, Tritapepe L, Fiaccadori E. Regional citrate anticoagulation for RRTs in critically ill patients with AKI. Clin J Am Soc Nephrol 2014; 9: 2173-88.Google Scholar
  98. 98.
    Zhang Z, Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Med 2012; 38: 20-8.Google Scholar
  99. 99.
    Kirwan CJ, Jackson L, Prowle JR. A continuous renal replacement therapy protocol on the updated Nikkiso Aquarius Platform using regional citrate as first-line anticoagulation significantly improves filter life span but the position of the vascular access is key. Blood Purif 2018; 45: 129-30.Google Scholar
  100. 100.
    Khadzhynov D, Schelter C, Lieker I, et al. Incidence and outcome of metabolic disarrangements consistent with citrate accumulation in critically ill patients undergoing continuous venovenous hemodialysis with regional citrate anticoagulation. J Crit Care 2014; 29: 265-71.Google Scholar
  101. 101.
    Monchi M. Citrate pathophysiology and metabolism. Transfus Apher Sci 2017; 56: 28-30.Google Scholar
  102. 102.
    Link A, Klingele M, Speer T, et al. Total-to-ionized calcium ratio predicts mortality in continuous renal replacement therapy with citrate anticoagulation in critically ill patients. Crit Care 2012; 16: R97.Google Scholar
  103. 103.
    Bakker AJ, Boerma EC, Keidel H, Kingma P, van der Voort PH. Detection of citrate overdose in critically ill patients on citrate-anticoagulated venovenous haemofiltration: use of ionised and total/ionised calcium. Clin Chem Lab Med 2006; 44: 962-6.Google Scholar

Copyright information

© Canadian Anesthesiologists' Society 2019

Authors and Affiliations

  • George Alvarez
    • 1
    Email author
  • Carla Chrusch
    • 1
  • Terry Hulme
    • 1
  • Juan G. Posadas-Calleja
    • 1
  1. 1.Department of Critical Care MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations