Advertisement

Handgrip dynamometry for continuous assessment of volitional control during induction of anesthesia: a prospective observational study

  • Christian S. Guay
  • Gilles PlourdeEmail author
Reports of Original Investigations

Abstract

Purpose

Response to commands is the gold standard to assess the level of consciousness during anesthesia induction but it only provides an intermittent, binary measure with low temporal resolution. To overcome these limitations, we combined the object hold method with handgrip dynamometry to continuously record the force applied to hold a dynamometer as a surrogate measure of the level of consciousness during induction of anesthesia.

Methods

Fourteen patients scheduled for elective lumbar surgery and 14 age-matched non-anesthetized controls were enrolled. The subjects held the dynamometer with their dominant hand for as long as possible (patients) or until told to stop (controls). After a one-minute baseline, propofol was infused (1.0 mg·kg−1·min−1) to the patient group until the subject dropped the dynamometer, which defined the object hold time. Three additional patients were also asked intermittently to squeeze the dynamometer during the propofol infusion to determine any retained ability to exert a strong grip despite any grip changes during induction.

Results

The mean (standard deviation) object hold time was 115 (22) seconds after the start of the propofol infusion. There was a progressive significant linear decrease (R2 = 0.98; P < 0.001) in dynamometry-determined handgrip force starting approximately 74 seconds before object drop. Age was inversely related to the object hold time (R2 = 0.47, P < 0.01). The three additional propofol induction patients had strong intermittent grip strength despite progressive decreases in the hold force. Of the 17 patients who completed the object hold task (14 with the standard protocol and three with intermittent squeeze requests), 16 (94%; 95% confidence interval, 76 to 99%) did not respond to verbal commands after dropping the dynamometer.

Conclusion

Handgrip dynamometry can be used to continuously track volitional control during induction of anesthesia while also reliably showing a gradual loss of consciousness. This method could be useful for studies investigating mechanisms of anesthesia.

La dynamométrie du serrement manuel comme évaluation continue du contrôle volontaire pendant l’induction de l’anesthésie : étude observationnelle prospective

Résumé

Objectif

La réponse aux ordres constitue la référence pour évaluer le niveau de conscience au cours de l’induction d’une anesthésie, mais cela ne procure qu’une mesure intermittente, binaire avec une résolution temporelle faible. Pour surmonter ces limites, nous avons utilisé la méthode de la mesure dynamométrique de la tenue d’un objet par serrement manuel pour enregistrer en continu la force appliquée pour tenir le dynamomètre comme mesure substitutive du niveau de conscience pendant l’induction de l’anesthésie.

Méthodes

Quatorze patients devant bénéficier d’une chirurgie lombaire élective et quatorze contrôles appariés pour l’âge mais non anesthésiés ont été recrutés. Les sujets ont tenu le dynamomètre dans leur main dominante le plus longtemps possible (patients) ou jusqu’à ce qu’on leur dise de le relâcher (contrôle). Après une période de référence d’une minute, le propofol a été perfusé à la dose de 1,0 mg·kg−1·min−1 au groupe de patients jusqu’à ce qu’ils laissent tomber le dynamomètre, définissant le temps de tenue de l’objet. Nous avons également demandé à trois patients supplémentaires de presser de façon intermittente le dynamomètre pendant la perfusion de propofol pour déterminer toute capacité persistante à le tenir fort en dépit du changement de la force appliquée au cours de l’induction.

Résultats

La durée de tenu moyenne (écart-type) de l’objet a été de 115 (22) secondes après le début de la perfusion de propofol. Il y a eu une diminution linéaire progressive significative (R2 = 0,98; P < 0,001) dans la force de serrage déterminée par dynamométrie qui a commencé environ 74 secondes avant la chute de l’objet. Il y a eu une corrélation inverse entre l’âge et la durée de tenue du dynamomètre (R2 = 0,47, P < 0,01). Les trois patients supplémentaires sous propofol ont présenté une bonne force de serrage intermittente en dépit d’une baisse progressive de la force de maintien. Sur les 17 patients ayant effectué la tâche de maintien de l’objet (14 avec le protocole standard et trois avec des demandes intermittentes de serrage), 16 (94 %; intervalle de confiance à 95 % : 76 % à 99 %) ne répondaient plus aux ordres prononcés après avoir lâché le dynamomètre.

Conclusion

La mesure dynamométrique du serrement manuel peut être utilisée pour suivre en continu le contrôle volontaire au cours de l’induction de l’anesthésie tout en montrant aussi de façon fiable la perte graduelle de conscience. Cette méthode peut s’avérer utile dans les études portant sur les mécanismes de l’anesthésie.

Notes

Acknowledgements

We thank our colleague Dr. Daniel Chartrand for his assistance with manuscript editing. We also thank the nursing staff, our surgical colleagues, our respiratory therapists, and anesthesiologist colleagues for their cooperation and assistance with this study.

Conflicts of interest and other associations

None declared.

Editorial responsibility

This submission was handled by Dr. Hilary P. Grocott, Editor-in-Chief, Canadian Journal of Anesthesia.

Author contributions

Christian S. Guay contributed to the experimental protocol, patient recruitment, data collection, data analysis, and manuscript writing. Gilles Plourde designed the experiment, obtained REB approval, contributed to data collection, data analysis, and manuscript writing.

Funding

Departmental academic fund.

Supplementary material

12630_2018_1224_MOESM1_ESM.png (71 kb)
Supplementary material 1 (PNG 70 kb) Supplemental FIGURE Diagnostic information for the residuals and fit statistics provided by SAS PROC MIXED. This figure reveals no anomaly with the residuals. AIC = Akaike’s Information Criterion; AICc = corrected Akaike’s Information Criterion; BIC = Bayesian Information Criterion.

References

  1. 1.
    Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science 2008; 322: 876-80.CrossRefGoogle Scholar
  2. 2.
    Langsjo JW, Revonsuo A, Scheinin H. Harnessing anesthesia and brain imaging for the study of human consciousness. Curr Pharm Des 2014; 20: 4211-24.Google Scholar
  3. 3.
    Mashour GA. Integrating the science of consciousness and anesthesia. Anesth Analg 2006; 103: 975-82.CrossRefGoogle Scholar
  4. 4.
    Sanders RD, Tononi G, Laureys S, Sleigh JW. Unresponsiveness ≠ unconsciousness. Anesthesiology 2012; 116: 946-59.CrossRefGoogle Scholar
  5. 5.
    Sanders RD, Gaskell A, Raz A, et al. Incidence of connected consciousness after tracheal intubation: a prospective, international, multicenter cohort study of the isolated forearm technique. Anesthesiology 2017; 126: 214-22.CrossRefGoogle Scholar
  6. 6.
    Koskinen M, Mustola S, Seppanen T. Relation of EEG spectrum progression to loss of responsiveness during induction of anesthesia with propofol. Clin Neurophysiol 2005; 116: 2069-76.CrossRefGoogle Scholar
  7. 7.
    Breshears JD, Roland JL, Sharma M, et al. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci USA 2010; 107: 21170-5.CrossRefGoogle Scholar
  8. 8.
    Lewis LD, Weiner VS, Mukamel EA, et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA 2012; 109: E3377-86.CrossRefGoogle Scholar
  9. 9.
    Ni Mhuircheartaigh R, Warnaby C, Rogers R, Jbabdi S, Tracey I. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans. Sci Transl Med 2013; 5: 208ra148.Google Scholar
  10. 10.
    Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA 2013; 110: E1142-51.CrossRefGoogle Scholar
  11. 11.
    Alonso LM, Proekt A, Schwartz TH, Pryor KO, Cecchi GA, Magnasco MO. Dynamical criticality during induction of anesthesia in human ECoG recordings. Front Neural Circuits 2014; 8: 20.CrossRefGoogle Scholar
  12. 12.
    Mukamel EA, Pirondini E, Babadi B, et al. A transition in brain state during propofol-induced unconsciousness. J Neurosci 2014; 34: 839-45.CrossRefGoogle Scholar
  13. 13.
    Cummings GC, Dixon J, Kay NH, et al. Dose requirements of ICI 35,868 (propofol, ‘Diprivan’) in a new formulation for induction of anaesthesia. Anaesthesia 1984; 39: 1168-71.CrossRefGoogle Scholar
  14. 14.
    STROBE. STROBE Initiative Reporting Guidlelines. Available from URL: https://www.strobe-statement.org (accessed July 2018).Google Scholar
  15. 15.
    Merlan. Scientific Equipment. Available from URL: https://www.merlan.ca/ct/productdetail.aspx?id=96812&style=boxes (accessed July 2018).Google Scholar
  16. 16.
    Reuben DB, Magasi S, McCreath HE, et al. Motor assessment using the NIH Toolbox. Neurology 2013; 80: S65-75.CrossRefGoogle Scholar
  17. 17.
    Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One 2014; 9: e113637.CrossRefGoogle Scholar
  18. 18.
    Zanner R, Pilge S, Kochs EF, Kreuzer M, Schneider G. Time delay of electroencephalogram index calculation: analysis of cerebral state, bispectral, and Narcotrend indices using perioperatively recorded electroencephalographic signals. Br J Anaesth 2009; 103: 394-9.CrossRefGoogle Scholar
  19. 19.
    Brice DD, Hetherington RR, Utting JE. A simple study of awareness and dreaming during anaesthesia. Br J Anaesth 1970; 42: 535-42.CrossRefGoogle Scholar
  20. 20.
    Cox DR, Oakes D. Analysis of Survival Data. London: Chapman & Hall; 1984 .Google Scholar
  21. 21.
    Blair RC, Karniski W. An alternative method for significance testing of waveform difference potentials. Psychophysiology 1993; 30: 518-24.CrossRefGoogle Scholar
  22. 22.
    Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Shabenberger O. SAS System for Mixed Models. Cary, NC, USA: SAS Institute, Inc; 2006 .Google Scholar
  23. 23.
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989; 45: 255-68.CrossRefGoogle Scholar
  24. 24.
    Vonesh EF, Chinchilli VM, Pu K. Goodness-of-fit in generalized nonlinear mixed-effects models. Biometrics 1996; 52: 572-87.CrossRefGoogle Scholar
  25. 25.
    Reed SJ, Plourde G. Attenuation of high-frequency (50-200 Hz) thalamocortical EEG rhythms by propofol in rats is more pronounced for the thalamus than for the cortex. PLoS One 2015; 10: e0123287.CrossRefGoogle Scholar
  26. 26.
    Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Stat Sci 2001; 16: 101-33.Google Scholar
  27. 27.
    Tsai PF, Matsuura N, Kaneko Y, Ichinohe T. Propofol dose-dependently increases bite force during sedation. J Oral Maxillofac Surg 2011; 69: 2746-52.CrossRefGoogle Scholar
  28. 28.
    Evarts EV, Fromm C, Kroller J, Jennings VA. Motor cortex control of finely graded forces. J Neurophysiol 1983; 49: 1199-215.CrossRefGoogle Scholar
  29. 29.
    Ashe J. Force and the motor cortex. Behav Brain Res 1997; 87: 255-69.CrossRefGoogle Scholar
  30. 30.
    Boline J, Ashe J. On the relations between single cell activity in the motor cortex and the direction and magnitude of three-dimensional dynamic isometric force. Exp Brain Res 2005; 167: 148-59.CrossRefGoogle Scholar
  31. 31.
    Georgopoulos AP, Ashe J, Smyrnis N, Taira M. The motor cortex and the coding of force. Science 1992; 256: 1692-5.CrossRefGoogle Scholar
  32. 32.
    Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Mastaglia FL. Isometric force-related activity in sensorimotor cortex measured with functional MRI. Exp Brain Res 1998; 121: 59-64.CrossRefGoogle Scholar
  33. 33.
    Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H. Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 2000; 83: 528-36.CrossRefGoogle Scholar
  34. 34.
    Dai TH, Liu JZ, Sahgal V, Brown RW, Yue GH. Relationship between muscle output and functional MRI-measured brain activation. Exp Brain Res 2001; 140: 290-300.CrossRefGoogle Scholar
  35. 35.
    Yip GM, Chen ZW, Edge CJ, et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 2013; 9: 715-20.CrossRefGoogle Scholar
  36. 36.
    Concas A, Santoro G, Serra M, Sanna E, Biggio G. Neurochemical action of the general anaesthetic propofol on the chloride ion channel coupled with GABAA receptors. Brain Res 1991; 542: 225-32.CrossRefGoogle Scholar
  37. 37.
    Lidow MS, Goldman-Rakic PS, Gallager DW, Geschwind DH, Rakic P. Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey. Neuroscience 1989; 32: 609-27.CrossRefGoogle Scholar
  38. 38.
    Ingrande J, Lemmens HJ. Dose adjustment of anaesthetics in the morbidly obese. Br J Anaesth 2010; 105(Suppl 1): i16-23.CrossRefGoogle Scholar
  39. 39.
    Aminikhanghahi S, Cook DJ. A Survey of methods for time series change point detection. Knowl Inf Syst 2017; 51: 339-67.CrossRefGoogle Scholar
  40. 40.
    Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 1989; 77: 257-86.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists' Society 2018

Authors and Affiliations

  1. 1.Department of Anesthesia, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada
  2. 2.Departments of Anesthesia, Neurology and Neurosurgery, Montreal Neurological Institute and HospitalMcGill UniversityMontrealCanada

Personalised recommendations